Automated Theorem Proving

Georg Struth
University of Sheffield

Motivation

everybody loves my baby but my baby don't love nobody but me
(Doris Day)

Mechanised Reasoning

past: different systems/communities

- interactive theorem provers (Coq, HOL, Isabelle, Agda, Epigram, . . .)
- automated theorem provers (Prover9, Vampire, E, Spass, . . .)
- SAT/SMT solvers and other special purpose tools
future: mechanised reasoning environments that integrate these tools
this lecture: automated theorem proving (ATP)
- how they work
- when they are useful
- what they can't do (currently)

Overview

main topics: we will discuss

- solving equations: term rewriting and Knuth-Bendix completion
- first-order reasoning: ordered resolution and saturation-based ATP
- some ATP modelling examples
tools used: Prover9, Mace4

Term Rewriting

example: Consider the following rules for monoids

$$
(x y) z \rightarrow x(y z) \quad 1 x \rightarrow x \quad x 1 \rightarrow x
$$

questions:

- does this yield normal forms?
- can we decide whether two monoid terms are equivalent?

Term Rewriting

examples: consider the following rules for the stack

$$
\begin{aligned}
\operatorname{top}(\operatorname{push}(x, y)) & \rightarrow x & \operatorname{pop}(\operatorname{push}(x, y)) & \rightarrow y \\
\text { empty } ?(\perp) & \rightarrow \mathrm{T} & \text { empty? }(\operatorname{push}(x, y)) & \rightarrow \mathrm{F}
\end{aligned}
$$

question: what about the rule

$$
\operatorname{push}(\operatorname{top}(x), \operatorname{pop}(x)) \rightarrow x
$$

which applies if empty? $x=\mathrm{F}$?

Terms and Term Algebras

terms: $T_{\Sigma}(X)$ denotes set of terms over signature Σ and variables from X

$$
t::=x \mid f\left(t_{1}, \ldots t_{n}\right)
$$

constants are functions of arity 0
ground term: term without variables
remark: terms correspond to labelled trees

Terms and Term Algebras

example: Boolean algebra

- signature $\{+, \cdot,-, 0,1\}$
- + , . have arity 2 ; - has arity $1 ; 0,1$ have arity 0
- terms

$$
+(x, y) \approx x+y \quad \cdot(x,+(y, z)) \approx x \cdot(y+z)
$$

intuition: terms make the sides of equations

$$
\begin{gathered}
(x+y)+z=x+(y+z) \quad x+y=y+x \quad x=\overline{\bar{x}+\bar{y}+\bar{x}+y} \\
x \cdot y=\overline{\bar{x}+\bar{y}}
\end{gathered}
$$

Terms and Term Algebras

substitution:

- partial map $\sigma: X \rightarrow T_{\Sigma}(X)$ (with finite domain)
- all occurrences of variables in dom (σ) are replaced by some term
- "homomorphic" extension to terms, equations, formulas,...
example: for $f(x, y)=x+y$ and $\sigma: x \mapsto x \cdot z, y \mapsto x+y$,

$$
f(x, y) \sigma=f(x \cdot z, x+y)=(x \cdot z)+(x+y)
$$

remark: substitution is different from replacement:
replacing term s in term $r(\ldots s \ldots)$ by term t yields $r(\ldots t \ldots)$

Terms and Term Algebras

Σ-algebra: structure $\left(A,\left(f_{A}: A^{n} \rightarrow A\right)_{f \in \Sigma}\right)$
interpretation (meaning) of terms

- assignment $\alpha: X \rightarrow A$ gives meaning to variables
- homomorphism $I_{\alpha}: T_{\Sigma}(X) \rightarrow A$
- $I_{\alpha}(x)=\alpha(x)$ for all variables
- $I_{\alpha}(c)=c_{A}$ for all constants
- $I_{\alpha}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{A}\left(I_{\alpha}\left(t_{1}\right), \ldots, I_{\alpha}\left(t_{n}\right)\right)$
equations: $A \models s=t \Leftrightarrow I_{\alpha}(s)=I_{\alpha}(t)$ for all α.

Terms and Term Algebras

examples:

- BA terms can be interpreted in $\operatorname{BA}\{0,1\}$ via truth tables; row gives I_{α}
- operations on finite sets can be given as Cayley tables

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

$(\mathbb{N} \bmod 4)$

Deduction and Reduction

equtional reasoning: does E imply $s=t$?

- Proofs:

1. use rules of equational logic
(reflexivity, symmetry, transitivity, congruence, substitution, Leibniz, . . .)
2. use rewriting (orient equations, look for canonical forms)

- Refutations: Find model A with $A \models E$ and $A \models s \neq t$
example: equations for Boolean algebra
- imply $x \cdot y=y \cdot x$ (prove it)
- but not $x+y=x$ (find counterexample)

Rewriting

question: how can we effectively reduce to canonical form?

- reduction sequences must terminate
- reduction must be deterministic (diverging reductions must eventually converge)
example: the monoid rules generate canonical forms (why?)

Abstract Reduction

abstract reduction system: structure $\left(A,\left(R_{i}\right)_{i \in I}\right)$ with set A and binary relations R_{i}
here: one single relation \rightarrow with

- \leftarrow converse of \rightarrow
- $\rightarrow 0 \rightarrow$ relative product
$\bullet \leftrightarrow=\rightarrow \cup \leftarrow$
- \rightarrow^{+}transitive closure of \rightarrow
- \rightarrow^{*} reflexive transitive closure of \rightarrow
remarks:
- \rightarrow^{+}is transitive
- \rightarrow^{*} is preorder

Abstract Reduction

terminology:

- $a \in A$ reducible if $a \in \operatorname{dom}(\rightarrow)$
- $a \in A$ normal form if $a \in \overline{\operatorname{dom}(\rightarrow)}$
- b normal form of a if $a \rightarrow^{*} b$ and b normal form
- $\rightarrow^{*} \circ \leftarrow^{*}$ is called rewrite proof

properties:

- Church-Rosser $\leftrightarrow^{*} \subseteq \rightarrow^{*} \circ \leftarrow^{*}$
- confluence $\leftarrow^{*} \circ \rightarrow^{*} \subseteq \rightarrow^{*} \circ \leftarrow^{*}$
- local confluence $\leftarrow \circ \rightarrow \subseteq \rightarrow^{*} \circ \leftarrow^{*}$
- wellfounded no infinite \rightarrow sequences
- convergence is confluence and wellfoundedness

Abstract Reduction

theorems: (canonical forms)

- Church-Rosser equivalent to confluence
- confluence equivalent to local confluence and wellfoundedness
intuition: local confluence yields local criterion for Church-Rosser property
termination proofs: let $\left(A,<_{A}\right)$ and $\left(B, \leq_{B}\right)$ be posets with \leq_{B} wf then \leq_{A} wf if there is monotonic $f: A \rightarrow B$
intuition: reduce termination analysis to "well known" order like \mathbb{N}

Term Rewriting

term rewrite system: set R of rewrite rules $l \rightarrow r$ for $l, r \in T_{\Sigma}(X)$
one-step rewrite: $t(\ldots l \sigma \ldots) \rightarrow t(\ldots r \sigma \ldots) \quad$ for $l \rightarrow r \in R$ and σ substitution (if l matches subterm of t then subterm is replaced by $r \sigma$)
rewrite relation: smallest \rightarrow_{R} containing R and closed under contexts (monotonic) and substitutions (fully invariant)
example: $1 \cdot(x \cdot(y \cdot z)) \rightarrow x \cdot(y \cdot z)$ is one-step rewrite with monoid rule $1 \cdot x \rightarrow x$ and substitution $\sigma: x \mapsto x \cdot(y \cdot z)$

Term Rewriting

fact: convergent TRSs can decide equational theories
theorem: (Birkhoff) $E \models \forall \vec{x} . s=t \Leftrightarrow s \leftrightarrow_{E}^{*} t \Leftrightarrow \operatorname{cf}(s)=\operatorname{cf}(t)$
corollary: theories of finite convergent sets of equations are decidable
question: how can we turn E into convergent TRS?

Local Confluence in TRS

observation:

- local confluence depends on overlap of rewrite rules in terms
- if $l_{1} \rightarrow r_{1}$ rewrites a "skeleton subterm" l_{2}^{\prime} of $l_{2} \rightarrow r_{2}$ in some t then $l_{1} \sigma_{1}$ and $l_{2} \sigma_{2}$ must be subterms of t and $l_{1} \sigma_{1}=l_{2}^{\prime} \sigma_{2}$
- if variables in l_{1} and l_{2}^{\prime} are disjoint, then $l_{1}\left(\sigma_{1} \cup \sigma_{2}\right)=l_{2}^{\prime}\left(\sigma_{1} \cup \sigma_{2}\right)$
- $\sigma_{1} \cup \sigma_{2}$ can be decomposed into σ which "makes l_{1} and l_{2}^{\prime} equal" and σ^{\prime} which further instantiates the result
unifier of s and t : a substitution σ such that $s \sigma=t \sigma$

facts:

- if terms are unifiable, they have most general unifiers
- mgus are unique and can be determined by efficient algorithms

Unification

naive algorithm: (exponential in size of terms)

$$
\begin{aligned}
E, s=s & \Rightarrow E \\
E, f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right) & \Rightarrow E, s_{1}=t_{1}, \ldots, s_{n}=t_{n} \\
E, f(\ldots)=g(\ldots) & \Rightarrow \perp \\
E, t=x & \Rightarrow E, x=t \quad \text { if } t \notin X \\
E, x=t & \Rightarrow \perp \quad \text { if } x \neq t \text { and } x \text { occurs in } t \\
E, x=t & \Rightarrow E[t / x], x=t \quad \text { if } x \text { doesn't occur in } t
\end{aligned}
$$

Unification

example:

$$
\begin{gathered}
f(g(x, b), f(x, z))=f(y, f(g(a, b), c)) \\
\Downarrow \\
\cdots \\
\Downarrow \\
y=g(g(a, b), b), \quad x=g(a, b), z=c
\end{gathered}
$$

Critical Pairs

task: establish local confluence in TRS
question: how can rewrite rules overlap in terms?

- disjoint redexes (automatically confluent)
- variable overlap (automatically confluent)
- skeleton overlap (not necessarily confluent)
. . . see diagrams
conclusion: skeleton overlaps lead to equations that may not have rewrite proofs

Critical Pairs

critical pairs: $l_{1} \sigma\left(\ldots r_{2} \sigma \ldots\right)=r_{1} \sigma$ where

- $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ rewrite rules
- $\sigma \mathrm{mgu}$ of l_{2} and subterm l_{1}^{\prime} of l_{1}
- $l_{1}^{\prime} \notin X$
example: $x+(-x) \rightarrow 0$ and $x+((-x)+y) \rightarrow y$ have $\mathrm{cp} x+0=-(-x)$
theorem: A TRS is locally confluent iff all critical pairs have rewrite proofs
remark: confluence decidable for finite wf TRS (only finitely many cps must be inspected)

Wellfoundedness/Termination

fact: proving termination of TRSs requires complex constructions
lexicographic combination: for posets $\left(A_{1},<_{1}\right)$ and $\left(A_{2},<_{2}\right)$ define $<$ of type $A_{1} \times A_{2}$ by

$$
\left(a_{1}, a_{2}\right)>\left(b_{1}, b_{2}\right) \Leftrightarrow a_{1}>_{1} b_{1}, \text { or } a_{1}=b_{1} \text { and } a_{2}>b_{2}
$$

fact: $\left(A_{1} \times A_{2},<\right)$ is a poset and $<$ is wf iff $<_{1}$ and $<_{2}$ are

Wellfoundedness/Termination

multiset over set $A:$ map $m: A \rightarrow \mathbb{N}$
remark: consider only finite multisets
multiset extension: for poset $(A,<)$ define $<$ of type $(A \rightarrow \mathbb{N}) \times(A \rightarrow \mathbb{N})$ by

$$
\begin{aligned}
m_{1}>m_{2} \Leftrightarrow & m_{1} \neq m_{2} \text { and } \\
& \forall a \in A .\left(m_{2}(a)>m_{1}(a) \Rightarrow \exists b \in A .\left(b>a \text { and } m_{1}(b)>m_{2}(b)\right)\right)
\end{aligned}
$$

fact: this is a partial order; it is wellfounded if the underlying order is

Reduction Orderings

idea: for finite TRS, inspect only finitely many rules for termination
reduction ordering: wellfounded partial ordering on terms such that all operations and substitutions are order preserving
fact: TRS terminates iff \rightarrow is contained in some reduction ordering
in practice: reduction orderings should have computable approximations (halting problem)
interpretation: reduction orderings are wf iff all ground instantiations are wf

Reduction Orderings

polynomial orderings:

- associate function terms with polynomial weight functions with integer coeficients
- checking ordering constraints can be undecidable (Hilbert's 10th problem)
- restrictions must be imposed

Reduction Orderings

simplification orderings: monotonic ordering on terms that contain the (strict) subterm ordering
theorem: simplification orderings over finite signatures are wf but not all wf orderings are simplification orderings
example: $f f x \rightarrow f g f x$ terminates and induces reduction ordering $>$

1. assume $>$ is simplification ordering
2. $f x$ is subterm of $g f x$, hence $g f x>f x$
3. then $f g f x>f f x$ by monotonicity
4. so $f f x>f f x$, a contradiction
5. conclusion: wf not always captured by simplification ordering

Simplification Orderings

lexicographic path ordering: for precedence \succ on Σ define relation $>$ on $T_{\Sigma}(X)$

- $s>x$ if x proper subterm of s, or
- $s=f\left(s_{1}, \ldots s_{m}\right)>g\left(t_{1}, \ldots, t_{n}\right)=t$ and
- $s_{i}>t$ for some i or
- $f \succ g$ and $s>t_{i}$ for all i or
- $f=g, s>t_{i}$ for all i and $\left(s_{1}, \ldots, s_{m}\right)>\left(t_{1}, \ldots, t_{m}\right)$ lexicographically
fact: Ipo is simplification ordering, it is total if the precedence is

variations:

- multiset path ordering: compare subterms as multisets
- recursive path ordering: function symbols have either lex or mul status
- Knuth-Bendix ordering: hybrid of weights and precedences

Knuth-Bendix Completion

idea: take set of equations and reduction ordering

- orient equations into decreasing rewrite rules
- inspect all critial pairs and add resulting equations
- delete trivial equations
- if all equations can be oriented, KB-closure contains convergent TRS
extension: delete redundant expressions, e.g.
if $r \rightarrow s, s \rightarrow t \in R$, then adding $r \rightarrow t$ to R makes $r \rightarrow s$ redundant

therefore:

- KB-completion combines deduction and reduction
- this is essentially basis construction

Knuth-Bendix Completion

rule based algorithm: let $<$ be reduction ordering

- delete: $E, t=t, R \Rightarrow E, R$
- orient: $E, s=t, R \Rightarrow E, R, s \rightarrow t$ if $s>t$
- deduce: $E, R \Rightarrow E, s=t, R$ if $s=t$ is cp from R
- simplify: $E, r=s, R \Rightarrow E, r=t, R$ if $s \rightarrow_{R} t$
- compose: $E, R, r \rightarrow s \Rightarrow E, R, r \rightarrow t$ if $s \rightarrow_{R} t$
- collapse: $E, R, r \rightarrow s \Rightarrow E, s=t, R$ if $r \rightarrow_{R} t$ rewrites strict subterm
remark: permutations in $s=t$ are implicit
strategy: $\left(\left((\text { simplify }+ \text { delete })^{*} ;\left(\text { orient } ;(\text { compose }+ \text { collapse })^{*}\right)\right)^{*} ; \text { deduce }\right)^{*}$

Knuth-Bendix Completion

properties: the following facts can be shown

- soundness: completion doesn't change equational theory
- correctness: if process is fair (all cps eventually computed) and all equations can be oriented, then limit yields convergent TRS "KB-basis"
main construction: use complex wf order on proofs to show that all completion steps decrease proofs, hence induce rewrite proofs
observation: completion need not succeed
- it can fail to orient persistent equations
- it can loop forever
fact: if completion succeeds, it yields canonical TRS (convergent and interreduced)

Knuth-Bendix Completion

observation:

- KB-completion always succeeds on ground TRSs (congruence closure)
- KB-completion wouldn't fail when $<$ is total
- but rules $x y=y x$ can never be oriented
unfailing completion: only rewrite with equations when this causes decrease
- let $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$
- let l_{1}^{\prime} be "skeleton" subterm of l_{1}
- let σ be mgu of l_{1}^{\prime} and l_{2}
- let μ be substitution with $l_{1} \sigma \mu \not \leq r_{1} \sigma \mu$ and $l_{1} \sigma \mu \not \leq l_{1} \sigma\left(\ldots r_{2} \sigma \ldots\right) \mu$ then $l_{1} \sigma\left(\ldots r_{2} \sigma \ldots\right)=r_{1} \sigma$ is ordered cp for deduction

Knuth-Bendix Completion

remarks:

- unfailing completion is a complete ATP procedure for pure equations
- this has been implemented in the Waldmeister tool

Knuth-Bendix Completion

example: groups

- input: appropriate ordering and equations

$$
1 \cdot x=x \quad x^{-1} \cdot x=1 \quad(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

- output: canonical TRS

$$
\begin{array}{cc}
1^{-1} \rightarrow 1 \quad & x \cdot 1 \rightarrow x \quad 1 \cdot x \rightarrow x \quad \\
\left.x^{-1} \cdot x \rightarrow 1 \quad x \cdot x^{-1} \rightarrow 1 \quad x^{-1}\right)^{-1} \rightarrow x \\
x \cdot\left(x^{-1} \cdot y\right) \rightarrow y \quad & (x \cdot y)^{-1} \rightarrow y^{-1} \cdot x^{-1} \quad(x \cdot y) \rightarrow y \\
(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)
\end{array}
$$

Knuth-Bendix Completion

$$
\begin{aligned}
& \text { example: groups (cont.) } \\
& \text { proof of }\left(x^{-1} \cdot(x \cdot y)\right)^{-1}=\left(x^{-1} \cdot y\right)^{-1} \cdot x^{-1} \\
& \qquad \begin{aligned}
\left(x^{-1} \cdot(x \cdot y)\right)^{-1} & \rightarrow_{R} y^{-1} \\
& \leftarrow R y^{-1} \cdot 1 \\
& \leftarrow R y^{-1} \cdot\left(\left(x^{-1}\right)^{-1} \cdot x^{-1}\right) \\
& \leftarrow R\left(y^{-1} \cdot\left(x^{-1}\right)^{-1}\right) \cdot x^{-1} \\
& \leftarrow R\left(x^{-1} \cdot y\right)^{-1} \cdot x^{-1}
\end{aligned}
\end{aligned}
$$

Propositional Resolution

literals are either

- propositional variables P (positive literals) or
- negated propositional variables $\neg P$ (negative literals)
clauses are disjunctions (multisets) of literals
clause sets are conjunctions of clauses
property: every propositional formula is equivalent to a clause set
(linear structure preserving algorithm)

Propositional Resolution

orders: let S be clause set

- consider total wf order $<$ on variables
- extend lexicographically to pairs (P, π) on literals where π is 0 for positive literals and 1 for negative ones
- compare clauses with the multiset extension of that order
consequence: < total wf order on S

Propositional Resolution

building models: partial model H is set of positive literals

- inspect clauses in increasing order
- if clause is false and maximal literal P, throw P into H
- if clause is true, or false and maximal literal negative, do nothing
question: does this yield model of S ?
first reason for failure: clause set $\{\Gamma \vee P \vee P\}$ has no model if P maximal remedy: merge these literals (ordered factoring)

$$
\frac{\Gamma \vee P \vee P}{\Gamma \vee P} \quad \text { if } P \text { maximal }
$$

Propositional Resolution

second reason for failure: literals ordered according to indices

clauses	partial models
P_{1}	$\left\{P_{1}\right\}$
$P_{0} \vee \neg P_{1}$	$\left\{P_{1}\right\}$
$P_{3} \vee P_{4}$	$\left\{P_{1}, P_{4}\right\}$

$$
\left\{P_{1}, P_{4}\right\} \not \models P_{0} \vee \neg P_{1} \text {, but }\left\{P_{0}, P_{1}, P_{4}\right\} \models P_{0} \vee \neg P_{1}
$$

remedy: add clause P_{0} to set (it is entailed)
more generally: (ordered resolution)

$$
\frac{\Gamma \vee P \quad \Delta \vee \neg P}{\Gamma \vee \Delta} \quad \text { if }(\neg) P \text { maximal }
$$

Propositional Resolution

resolution closure: (saturation) $R(S)$
theorem: If $R(S)$ doesn't contain the empty clause then the construction yields model for S
proof: by wf induction

1. failing construction has minimal counterexample C
2. either positive maximal literal occurs more then once, then factoring yields smaller counterexample
3. or maximal literal is negative, then resolution yields smaller counterexample
4. both cases yield contradiction
corollary: $R(S)$ contains empty clause iff S inconsistent

Propositional Resolution

resolution proofs: (refutational completeness) empty clause can be derived from all finite inconsistent clause sets
proof: by closure construction, empty clause is derived after finitely many steps
theorem: (compactness) S is unsatisfiable iff some finite subset is
proof: use the hypotheses from refutation
theorem: resolution decides propositional logic
proof: the maximal clause C in S is the maximal clause in $R(S)$
and there are only finitely many clauses smaller than S

A Resolution Proof

```
1 -A | B. [assumption].
2 -B | C. [assumption].
3 A | -C. [assumption].
4 A | B | C. [assumption].
5 -A | -B | -C. [assumption].
6 A | B. [resolve(4,c,3,b),merge(c)].
7 A | C. [resolve(6,b,2,a)].
8 A. [resolve(7,b,3,b),merge(b)].
9 -B | -C. [back_unit_del(5),unit_del(a,8)].
10 B. [back_unit_del(1),unit_del(a,8)].
11 -C. [back_unit_del(9),unit_del(a,10)].
12 $F. [back_unit_del(2),unit_del(a,10),unit_del(b,11)].
```


First-Order Resolution

idea:

- transform formulas in prenex form
(quantfier prefix followed by quantifier free formula)
- Skolemise existential quantifiers $\forall \vec{x} \exists y . \phi \Rightarrow \forall \vec{x} . \phi[f(\vec{x}) / y]$
- drop universal quantifiers
- transform in CNF
fact: Skolemisation preserves satisfiability
example: $\forall x . R(x, x) \wedge(\exists y . P(y) \vee \forall x . \exists y \cdot R(x, y) \vee \forall z \cdot Q(z))$ becomes $\forall x . R(x, x) \wedge(P(a) \vee \forall x . R(x, f(x)) \vee \forall z . Q(z))$

First-Order Resolution

motivation:

- the premises $P(f(x, a)$ and $\neg P(f(y, z) \vee \neg P(f(z, y))$ imply $\neg P(f(a, x)$
- this conclusion is most general with respect to instantiation
- it can be obtained from the mgu of $f(x, a)$ and $f(z, y)$ etc

first-order resolution:

- don't instantiate, unify (less junk in resolution closure)
- unification instead of identification

$$
\frac{\Gamma \vee P \quad \Delta \vee \neg P^{\prime}}{(\Gamma \vee \Delta) \sigma} \quad \frac{\Gamma \vee P \vee P^{\prime}}{(\Gamma \vee P) \sigma} \quad \sigma=m g u\left(P, P^{\prime}\right)
$$

Lifting

question: are all ground inferences instances of non-ground ones?
theorem: (lifting lemma)

- let res $\left(C_{1}, C_{2}\right)$ denote the resolvent of C_{1} and C_{2}
- let C_{1} and C_{2} have no variables in common
- let σ be substitution then $\operatorname{res}\left(C_{1} \sigma, C_{2} \sigma\right)=\operatorname{res}\left(C_{1}, C_{2}\right) \rho$ for some substitution ρ
remark: similar property for factoring
consequences: (refutational completeness)
- if clause set is closed then set of all ground instances is closed
- resolution derives the empty clause from all inconsistent inputs

Redundancy

question:

- KB-completion allows the deletion of redundant equations
- is this possible for resolution?
idea: basis construction
- compute resolution closure
- then delete all clauses that are entailed by other clauses
- but model construction "forgets" what happened in the past
- clauses entailed by smaller clauses need not be inspected
- they can never contribute to model or become counterexamples
- can deletion of redundant clauses be stratified?
- can that be formalised?

Redundancy

idea: approximate notion of redundancy with respect to clause ordering

definition:

- clause C is redundant with respect to clause set Γ if for some finite $\Gamma^{\prime} \subseteq \Gamma$

$$
\Gamma^{\prime} \models C \quad \text { and } \quad C>\Gamma^{\prime}
$$

- resolution inference is redundant if its conclusion is entailed by one of the premises and smaller clauses (more or less)
fact: it can be shown that resolution is refutationally complete up to redundancy
intuition: construction of ordered resolution bases

Redundancy

examples:

- tautologies are redundant (they are entailed by the empty set of clauses)
- clause C^{\prime} is subsumed by clause C if

$$
C \sigma \subseteq C^{\prime}
$$

clauses that are subsumed are redundant

ATP in First-Order Logic with Equations

naive approach:

- equality is a prediate; axiomatise it
- . . . not very efficient
but KB-completion is very similar to ordered resolution deduction and reduction techniques are combined
idea:
- integrate KB-completion/unfailing completion into ordered resolution
- this yields superposition calculus

Superposition Calculus

assumption: consider equality as only predicate (predicates as Boolean functions)
inference rules: (ground case)

- equality resolution

$$
\frac{\Gamma \vee t \neq t}{\Gamma}
$$

- positive and negative superposition

$$
\frac{\Gamma \vee l=r \quad \Delta \vee s(\ldots l \ldots)=t}{\Gamma \vee \Delta \vee s(\ldots r \ldots)=t} \quad \frac{\Gamma \vee l=r \quad \Delta \vee s(\ldots l \ldots) \neq t}{\Gamma \vee \Delta \vee s(\ldots r \ldots) \neq t}
$$

- equality factoring

$$
\frac{\Gamma \vee s=t \vee s=t^{\prime}}{\Gamma \vee t \neq t^{\prime} \vee s=t^{\prime}}
$$

Superposition Calculus

operational meaning of rules:

- red terms must be "maximal" in respective equations and clauses
- equality resolution is resolution with "forgotten" reflexivity axiom
- superpositions are resolution with "forgotten" transitivity axiom
- equality factoring is resolution and factoring step with "forgotten" transitivity
consequence: equality axioms replaced by focused inference rules
property: equality factoring not needed for Horn clauses
model construction: adaptation of resolution case, integrating critical pair criteria

Model Construction

idea:

- force canonical TRS in resolution model construction
- this effectively constructs a congruence with respect to input equations
- the model constructed is the resulting quotient algebra
building models: partial model is set of rewrite rules
- inspect equational clauses in increasing order
- if clause is false, maximal equation $s=t(s>t)$, and s in nf , then throw $s=t$ into model
- otherwise do nothing

Model Construction

ordering: make negative identities larger than positive ones

- associate $s=t$ with multiset $\{s, t\}$
- associate $s \neq t$ with multiset $\{s, s, t, t\}$
consequence: each stage yields convergent TRS for clauses
- termination holds since all equations are oriented and $>$ wf
- (local) confluence holds since only reduced lhs are forced into model

Model Construction

refutational completeness: (Horn clauses) if $R(S)$ doesn't contain the empty clause then construction yields model for S
proof: by wf induction

1. failing construction has minimal counterexample C
2. $C=\Gamma \vee s=s$ impossible since C must be false
3. $C=\Gamma \vee s=t$, hence s must be reducible by rule $l \rightarrow r$ generated by clause $\Delta \vee l=r$ and positive superposition yields smaller counterexample $\Gamma \vee \Delta \vee s(\ldots r \ldots)=t$
4. $C=\Gamma \vee s \neq s$, then equality resolution yields smaller counterexample Γ
5. $C=\Gamma \vee s \neq t$, then exists rewrite proof for $s=t$, hence s reducible by rule $l \rightarrow r$ generated by $\Delta \vee l=r$ and negative superposition yields smaller counterexample $\Gamma \vee \Delta \vee s(\ldots r \ldots) \neq t$

Example

let $f \succ a \succ b \succ c \succ d$

Horn clauses	partial models
$c=d$	
$f(d) \neq d \vee a=b$	
$f(c)=d$	$\{c \rightarrow d\}$
$c=d$	
$f(d) \neq d \vee a=b$	
$f(c)=d$	
$f(d)=d$	$\{c \rightarrow d, f(d) \rightarrow d\}$
$c=d$	
$f(d) \neq d \vee a=b$	
$f(c)=d$	
$f(d)=d$	
$d \neq d \vee a=b$	$\{c \rightarrow d, f(d) \rightarrow d, a \rightarrow b\}$

Model Construction

non-Horn case: $C=\Gamma \vee s=t \vee s=t^{\prime}$ false, $t>t^{\prime}$ and $t=t^{\prime}$ has rewrite proof, then equality factoring yields smaller counterexample $\Gamma \vee t \neq t^{\prime} \vee s=t^{\prime}$
non-ground case: (lifting)

- do construction at level of ground instances
- for skeleton overlaps use superposition etc
- for variable overlaps, maximal term can be instantiated with rhs of reducing rule to obtain smaller counterexample

Redundancy

forward redundancy: simplify new clauses immediately after generation (by subsumption, rewriting, . . .)
backward redundancy: simplify existing clauses by rewrite rules that have been generated at later stage

Redundancy

example: consider lpo with precedence $f \succ a \succ b$ and equations

$$
\begin{aligned}
& f(a, x)=x \\
& f(x, a)=f(x, b)
\end{aligned}
$$

Redundancy

example:

$$
\begin{aligned}
& f(a, x)=x \\
& f(x, a)=f(x, b) \\
& f(a, b)=a
\end{aligned}
$$

is obtained by superposition

Redundancy

example:

$$
\begin{aligned}
f(a, x) & =x \\
f(x, a) & =f(x, b) \\
f(a, b) & =a \\
b & =a
\end{aligned}
$$

then follows by rewriting the third equation by the first one. . .

Redundancy

example:

$$
\begin{aligned}
f(a, x) & =x \\
f(x, a) & =f(x, b) \\
a & =b
\end{aligned}
$$

... and the third equation can be deleted (forward redundancy)

Redundancy

example:

$$
\begin{aligned}
f(a, x) & =x \\
f(x, a) & =f(x, b) \\
a & =b \\
f(x, b) & =f(x, b)
\end{aligned}
$$

then follows by rewriting the second equation by the third one. . .

Redundancy

example:

$$
\begin{array}{r}
f(a, x)=x \\
a=b
\end{array}
$$

. . . and the second and fourth identity can be deleted

Redundancy

example:

$$
\begin{aligned}
f(a, x) & =x \\
a & =b \\
f(b, x) & =x
\end{aligned}
$$

finally, the first equation can be rewritten by the second one. . .

Redundancy

example:

$$
\begin{aligned}
a & =b \\
f(b, x) & =x
\end{aligned}
$$

. . . and then deleted

Redundancy

```
assign(order,lpo).
function_order([b,a,f]). % f>a>b
formulas(sos).
f(a,x)=x.
f(x,a)=f(x,b).
end_of_list.
```


Redundancy

```
given #1 (I,wt=5): 1 f(a,x) = x. [assumption].
given #2 (I,wt=7): 2 f(x,a) = f(x,b). [assumption].
given #3 (A,wt=3): 3 a = b. [para(2(a,1),1(a,1)),rewrite([1(3)]),flip(a)].
given #4 (T,wt=5): 5 f(b,x) = x. [back_rewrite(1),rewrite([3(1)])].
```

SEARCH FAILED

Redundancy

redundancy: same concepts as for ordered resolution
closure computation: only irredundant inferences
model construction: clause sets have models if they are closed (up to redundant inferences) and don't contain the empty clause
proof: as previously, but contradictions arising from inferences being redundant example: positive superposition

$$
\frac{\Gamma \vee l=r \quad \Delta \vee s(\ldots l \ldots)=t}{\Gamma \vee \Delta \vee s(\ldots r \ldots)=t}
$$

right premise has not been forced into model;
it is redundant by this inference (entailed by smaller premise and conclusion)

Redundancy

example: demodulation

$$
\begin{aligned}
& P(f(a)) \\
& f(a)=a
\end{aligned}
$$

Redundancy

example: demodulation

$$
\begin{gathered}
P(f(a)) \\
f(a)=a \\
P(a)
\end{gathered}
$$

by rewriting "Leibniz principle"

Redundancy

example: demodulation

$$
\begin{gathered}
f(a)=a \\
P(a)
\end{gathered}
$$

first literal has been deleted since it is now redundant

Example

precedence: $P \succ Q \succ f \succ a$
clause set: initial clauses

$$
\begin{gathered}
Q(a) \\
Q(a) \Rightarrow f(a)=a \\
\neg P(a) \\
P(f(a))
\end{gathered}
$$

Example

precedence: $P \succ Q \succ f \succ a$
clause set: fifth clause by resolution from first and second one

$$
\begin{gathered}
Q(a) \\
Q(a) \Rightarrow f(a)=a \\
\neg P(a) \\
P(f(a)) \\
f(a)=a
\end{gathered}
$$

Example

precedence: $P \succ Q \succ f \succ a$
clause set: fourth clause rewritten by last one

$$
\begin{gathered}
Q(a) \\
Q(a) \Rightarrow f(a)=a \\
\neg P(a) \\
P(a) \\
f(a)=a
\end{gathered}
$$

Example

precedence: $P \succ Q \succ f \succ a$
clause set: empty clause by resolution from third and fourth one

$$
\begin{gathered}
Q(a) \\
Q(a) \Rightarrow f(a)=a \\
\neg P(a) \\
P(a) \\
f(a)=a \\
\perp
\end{gathered}
$$

Example

```
assign(order,lpo).
predicate_order([Q,P]). % P>Q
function_order([a,f]). % f>a
formulas(sos).
Q(a).
Q(a) ->f (a)=a.
-P(a).
P(f(a)).
end_of_list.
```


Example

```
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 8.
% Level of proof is 4.
% Maximum clause weight is 6.
% Given clauses 2.
1 Q(a) -> f(a) = a # label(non_clause). [assumption].
2 Q(a). [assumption].
3-Q(a) | f(a) = a. [clausify(1)].
4-P(a). [assumption].
5 P(f(a)). [assumption].
f(a) = a. [hyper(3,a,2,a)].
7 P(a). [back_rewrite(5),rewrite([6(2)])].
8 $F. [resolve(7,a,4,a)].
```


Conclusion

automated theorem proving:

- integrates deduction, reduction and redundancy elimination
- uses rewriting techniques and complex reduction orderings
- sophisticated heuristics, algorithms, data structures make it very efficient
- powerful tool for first-order reasoning (e.g. very good at textbook-level proofs in Boolean algebra)
- cannot deal with induction
- difficult to integrate decision procedures (lists, linear arithmetics, arrays, . . .)
- proofs rather incomprehensible

Conclusion

interesting research directions:

- reasoning in large theories ("hypothesis learning")
- integration of decision procedures/higher-order features
- domain-specific provers
- provers for constructive logic
- provers for order-based reasoning
- IO standardisation/exchange formats

Literature

- A. Robinson and A. Voronkov: Handbook of Automated Reasoning
- F. Baader and T. Nipkow: Term Rewriting and All That
- "Terese" Term Rewriting Systems
- T. Hillenbrand: Waldmeister www.waldmeister.org
- W. McCune: Prover9 and Mace4 www.cs.unm.edu/~mccune/mace4
- G. Sutcliffe and C. Suttner: The TPTP Problem Library www.cs.miami.edu/~tptp/
- extened version of slides (from Midlands Graduate School 2011) at my web site

