
Automated Theorem Proving

Georg Struth

University of Sheffield

Motivation

everybody loves my baby
but my baby don’t love nobody but me

(Doris Day)

Mechanised Reasoning

past: different systems/communities

• interactive theorem provers (Coq, HOL, Isabelle, Agda, Epigram, . . .)
• automated theorem provers (Prover9, Vampire, E, Spass, . . .)
• SAT/SMT solvers and other special purpose tools

future: mechanised reasoning environments that integrate these tools

this lecture: automated theorem proving (ATP)

• how they work
• when they are useful
• what they can’t do (currently)

Overview

main topics: we will discuss

• solving equations: term rewriting and Knuth-Bendix completion
• first-order reasoning: ordered resolution and saturation-based ATP
• some ATP modelling examples

tools used: Prover9, Mace4

Term Rewriting

example: Consider the following rules for monoids

(xy)z → x(yz) 1x→ x x1→ x

questions:

• does this yield normal forms?
• can we decide whether two monoid terms are equivalent?

Term Rewriting

examples: consider the following rules for the stack

top(push(x, y))→ x pop(push(x, y))→ y

empty?(⊥)→ T empty?(push(x, y))→ F

question: what about the rule

push(top(x), pop(x))→ x

which applies if empty?x = F ?

Terms and Term Algebras

terms: TΣ(X) denotes set of terms over signature Σ and variables from X

t ::= x | f(t1, . . . tn)

constants are functions of arity 0

ground term: term without variables

remark: terms correspond to labelled trees

Terms and Term Algebras

example: Boolean algebra

• signature {+, ·, , 0, 1}
• +, · have arity 2; has arity 1; 0,1 have arity 0
• terms

+(x, y) ≈ x+ y · (x,+(y, z)) ≈ x · (y + z)

intuition: terms make the sides of equations

(x+ y) + z = x+ (y + z) x+ y = y + x x = x+ y + x+ y

x · y = x+ y

Terms and Term Algebras

substitution:

• partial map σ : X → TΣ(X) (with finite domain)
• all occurrences of variables in dom(σ) are replaced by some term
• “homomorphic” extension to terms, equations, formulas,. . .

example: for f(x, y) = x+ y and σ : x 7→ x · z, y 7→ x+ y,

f(x, y)σ = f(x · z, x+ y) = (x · z) + (x+ y)

remark: substitution is different from replacement:
replacing term s in term r(. . . s . . .) by term t yields r(. . . t . . .)

Terms and Term Algebras

Σ-algebra: structure (A, (fA : An → A)f∈Σ)

interpretation (meaning) of terms

• assignment α : X → A gives meaning to variables
• homomorphism Iα : TΣ(X)→ A

– Iα(x) = α(x) for all variables
– Iα(c) = cA for all constants
– Iα(f(t1, . . . , tn)) = fA(Iα(t1), . . . , Iα(tn))

equations: A |= s = t ⇔ Iα(s) = Iα(t) for all α.

Terms and Term Algebras

examples:

• BA terms can be interpreted in BA {0, 1} via truth tables; row gives Iα
• operations on finite sets can be given as Cayley tables

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(N mod 4)

Deduction and Reduction

equtional reasoning: does E imply s = t ?

• Proofs:
1. use rules of equational logic

(reflexivity, symmetry, transitivity, congruence, substitution, Leibniz, . . .)
2. use rewriting (orient equations, look for canonical forms)
• Refutations: Find model A with A |= E and A |= s 6= t

example: equations for Boolean algebra

• imply x · y = y · x (prove it)
• but not x+ y = x (find counterexample)

Rewriting

question: how can we effectively reduce to canonical form?

• reduction sequences must terminate
• reduction must be deterministic

(diverging reductions must eventually converge)

example: the monoid rules generate canonical forms (why?)

Abstract Reduction

abstract reduction system: structure (A, (Ri)i∈I)
with set A and binary relations Ri

here: one single relation → with

• ← converse of →
• → ◦ → relative product
• ↔ = → ∪ ←
• →+ transitive closure of →
• →∗ reflexive transitive closure of →

remarks:

• →+ is transitive
• →∗ is preorder

Abstract Reduction

terminology:

• a ∈ A reducible if a ∈ dom(→)
• a ∈ A normal form if a ∈ dom(→)
• b normal form of a if a→∗ b and b normal form
• →∗ ◦ ←∗ is called rewrite proof

properties:

• Church-Rosser ↔∗ ⊆ →∗ ◦ ←∗
• confluence ←∗ ◦ →∗ ⊆ →∗ ◦ ←∗
• local confluence ← ◦ → ⊆ →∗ ◦ ←∗
• wellfounded no infinite → sequences
• convergence is confluence and wellfoundedness

Abstract Reduction

theorems: (canonical forms)

• Church-Rosser equivalent to confluence
• confluence equivalent to local confluence and wellfoundedness

intuition: local confluence yields local criterion for Church-Rosser property

termination proofs: let (A,<A) and (B,≤B) be posets with ≤B wf
then ≤A wf if there is monotonic f : A→ B

intuition: reduce termination analysis to “well known” order like N

Term Rewriting

term rewrite system: set R of rewrite rules l→ r for l, r ∈ TΣ(X)

one-step rewrite: t(. . . lσ . . .)→ t(. . . rσ . . .) for l→ r ∈ R and σ substitution
(if l matches subterm of t then subterm is replaced by rσ)

rewrite relation: smallest →R containing R and closed
under contexts (monotonic) and substitutions (fully invariant)

example: 1 · (x · (y · z))→ x · (y · z) is one-step rewrite with
monoid rule 1 · x→ x and substitution σ : x 7→ x · (y · z)

Term Rewriting

fact: convergent TRSs can decide equational theories

theorem: (Birkhoff) E |= ∀~x.s = t ⇔ s↔∗E t ⇔ cf(s) = cf(t)

corollary: theories of finite convergent sets of equations are decidable

question: how can we turn E into convergent TRS?

Local Confluence in TRS

observation:

• local confluence depends on overlap of rewrite rules in terms
• if l1 → r1 rewrites a “skeleton subterm” l′2 of l2 → r2 in some t

then l1σ1 and l2σ2 must be subterms of t and l1σ1 = l′2σ2

• if variables in l1 and l′2 are disjoint, then l1(σ1 ∪ σ2) = l′2(σ1 ∪ σ2)
• σ1 ∪ σ2 can be decomposed into σ which “makes l1 and l′2 equal”

and σ′ which further instantiates the result

unifier of s and t: a substitution σ such that sσ = tσ

facts:

• if terms are unifiable, they have most general unifiers
• mgus are unique and can be determined by efficient algorithms

Unification

naive algorithm: (exponential in size of terms)

E, s = s ⇒ E

E, f(s1, . . . , sn) = f(t1, . . . , tn) ⇒ E, s1 = t1, . . . , sn = tn

E, f(. . .) = g(. . .) ⇒ ⊥
E, t = x ⇒ E, x = t if t 6∈ X
E, x = t ⇒ ⊥ if x 6= t and x occurs in t

E, x = t ⇒ E[t/x], x = t if x doesn’t occur in t

Unification

example:

f(g(x, b), f(x, z)) = f(y, f(g(a, b), c))

⇓
. . .

⇓
y = g(g(a, b), b), x = g(a, b), z = c

Critical Pairs

task: establish local confluence in TRS

question: how can rewrite rules overlap in terms?

• disjoint redexes (automatically confluent)
• variable overlap (automatically confluent)
• skeleton overlap (not necessarily confluent)

. . . see diagrams

conclusion: skeleton overlaps lead to equations that may not have rewrite proofs

Critical Pairs

critical pairs: l1σ(. . . r2σ . . .) = r1σ where

• l1 → r1 and l2 → r2 rewrite rules
• σ mgu of l2 and subterm l′1 of l1
• l′1 6∈ X

example: x+ (−x)→ 0 and x+ ((−x) + y)→ y have cp x+ 0 = −(−x)

theorem: A TRS is locally confluent iff all critical pairs have rewrite proofs

remark: confluence decidable for finite wf TRS
(only finitely many cps must be inspected)

Wellfoundedness/Termination

fact: proving termination of TRSs requires complex constructions

lexicographic combination: for posets (A1, <1) and (A2, <2) define < of type
A1 ×A2 by

(a1, a2) > (b1, b2) ⇔ a1 >1 b1, or a1 = b1 and a2 > b2

fact: (A1 ×A2, <) is a poset and < is wf iff <1 and <2 are

Wellfoundedness/Termination

multiset over set A: map m : A→ N

remark: consider only finite multisets

multiset extension: for poset (A,<) define < of type (A→ N)× (A→ N) by

m1 > m2 ⇔ m1 6= m2 and

∀a ∈ A.(m2(a) > m1(a)⇒ ∃b ∈ A.(b > a and m1(b) > m2(b)))

fact: this is a partial order; it is wellfounded if the underlying order is

Reduction Orderings

idea: for finite TRS, inspect only finitely many rules for termination

reduction ordering: wellfounded partial ordering on terms
such that all operations and substitutions are order preserving

fact: TRS terminates iff → is contained in some reduction ordering

in practice: reduction orderings should have computable approximations
(halting problem)

interpretation: reduction orderings are wf iff all ground instantiations are wf

Reduction Orderings

polynomial orderings:

• associate function terms with polynomial weight functions
with integer coeficients
• checking ordering constraints can be undecidable (Hilbert’s 10th problem)
• restrictions must be imposed

Reduction Orderings

simplification orderings: monotonic ordering on terms that contain
the (strict) subterm ordering

theorem: simplification orderings over finite signatures are wf
but not all wf orderings are simplification orderings

example: ff x→ fgf x terminates and induces reduction ordering >

1. assume > is simplification ordering
2. f x is subterm of gf x, hence gf x > f x
3. then fgf x > ff x by monotonicity
4. so ff x > ff x, a contradiction
5. conclusion: wf not always captured by simplification ordering

Simplification Orderings

lexicographic path ordering: for precedence � on Σ define relation > on TΣ(X)

• s > x if x proper subterm of s, or
• s = f(s1, . . . sm) > g(t1, . . . , tn) = t and

– si > t for some i or
– f � g and s > ti for all i or
– f = g, s > ti for all i and (s1, . . . , sm) > (t1, . . . , tm) lexicographically

fact: lpo is simplification ordering, it is total if the precedence is

variations:

• multiset path ordering: compare subterms as multisets
• recursive path ordering: function symbols have either lex or mul status
• Knuth-Bendix ordering: hybrid of weights and precedences

Knuth-Bendix Completion

idea: take set of equations and reduction ordering

• orient equations into decreasing rewrite rules
• inspect all critial pairs and add resulting equations
• delete trivial equations
• if all equations can be oriented, KB-closure contains convergent TRS

extension: delete redundant expressions, e.g.
if r → s, s→ t ∈ R, then adding r → t to R makes r → s redundant

therefore:

• KB-completion combines deduction and reduction
• this is essentially basis construction

Knuth-Bendix Completion

rule based algorithm: let < be reduction ordering

• delete: E, t = t, R ⇒ E,R
• orient: E, s = t, R ⇒ E,R, s→ t if s > t
• deduce: E,R ⇒ E, s = t, R if s = t is cp from R
• simplify: E, r = s,R ⇒ E, r = t, R if s→R t
• compose: E,R, r → s ⇒ E,R, r → t if s→R t
• collapse: E,R, r → s ⇒ E, s = t, R if r →R t rewrites strict subterm

remark: permutations in s = t are implicit

strategy: (((simplify + delete)∗; (orient; (compose+ collapse)∗))∗; deduce)∗

Knuth-Bendix Completion

properties: the following facts can be shown

• soundness: completion doesn’t change equational theory
• correctness: if process is fair (all cps eventually computed) and all equations

can be oriented, then limit yields convergent TRS ”KB-basis”

main construction: use complex wf order on proofs to show that
all completion steps decrease proofs, hence induce rewrite proofs

observation: completion need not succeed

• it can fail to orient persistent equations
• it can loop forever

fact: if completion succeeds, it yields canonical TRS
(convergent and interreduced)

Knuth-Bendix Completion

observation:

• KB-completion always succeeds on ground TRSs
(congruence closure)
• KB-completion wouldn’t fail when < is total
• but rules xy = yx can never be oriented

unfailing completion: only rewrite with equations when this causes decrease

• let l1 → r1 and l2 → r2

• let l′1 be “skeleton” subterm of l1
• let σ be mgu of l′1 and l2
• let µ be substitution with l1σµ 6≤ r1σµ and l1σµ 6≤ l1σ(. . . r2σ . . .)µ

then l1σ(. . . r2σ . . .) = r1σ is ordered cp for deduction

Knuth-Bendix Completion

remarks:

• unfailing completion is a complete ATP procedure for pure equations
• this has been implemented in the Waldmeister tool

Knuth-Bendix Completion

example: groups

• input: appropriate ordering and equations

1 · x = x x−1 · x = 1 (x · y) · z = x · (y · z)

• output: canonical TRS

1−1 → 1 x · 1→ x 1 · x→ x (x−1)−1 → x

x−1 · x→ 1 x · x−1 → 1 x−1 · (x · y)→ y

x · (x−1 · y)→ y (x · y)−1 → y−1 · x−1 (x · y) · z → x · (y · z)

Knuth-Bendix Completion

example: groups (cont.)
proof of (x−1 · (x · y))−1 = (x−1 · y)−1 · x−1

(x−1 · (x · y))−1 →R y−1

←R y−1 · 1

←R y−1 · ((x−1)−1 · x−1)

←R (y−1 · (x−1)−1) · x−1

←R (x−1 · y)−1 · x−1

Propositional Resolution

literals are either

• propositional variables P (positive literals) or
• negated propositional variables ¬P (negative literals)

clauses are disjunctions (multisets) of literals

clause sets are conjunctions of clauses

property: every propositional formula is equivalent to a clause set
(linear structure preserving algorithm)

Propositional Resolution

orders: let S be clause set

• consider total wf order < on variables
• extend lexicographically to pairs (P, π) on literals where
π is 0 for positive literals and 1 for negative ones
• compare clauses with the multiset extension of that order

consequence: < total wf order on S

Propositional Resolution

building models: partial model H is set of positive literals

• inspect clauses in increasing order
• if clause is false and maximal literal P , throw P into H
• if clause is true, or false and maximal literal negative, do nothing

question: does this yield model of S?

first reason for failure: clause set {Γ ∨ P ∨ P} has no model if P maximal

remedy: merge these literals (ordered factoring)

Γ ∨ P ∨ P
Γ ∨ P

if P maximal

Propositional Resolution

second reason for failure: literals ordered according to indices

clauses partial models
P1 {P1}

P0 ∨ ¬P1 {P1}
P3 ∨ P4 {P1, P4}

{P1, P4} 6|= P0 ∨ ¬P1, but {P0, P1, P4} |= P0 ∨ ¬P1

remedy: add clause P0 to set (it is entailed)

more generally: (ordered resolution)

Γ ∨ P ∆ ∨ ¬P
Γ ∨∆

if (¬)P maximal

Propositional Resolution

resolution closure: (saturation) R(S)

theorem: If R(S) doesn’t contain the empty clause then the construction
yields model for S

proof: by wf induction

1. failing construction has minimal counterexample C
2. either positive maximal literal occurs more then once, then factoring yields

smaller counterexample
3. or maximal literal is negative, then resolution yields smaller counterexample
4. both cases yield contradiction

corollary: R(S) contains empty clause iff S inconsistent

Propositional Resolution

resolution proofs: (refutational completeness) empty clause can be derived from
all finite inconsistent clause sets

proof: by closure construction, empty clause is derived after finitely many steps

theorem: (compactness) S is unsatisfiable iff some finite subset is

proof: use the hypotheses from refutation

theorem: resolution decides propositional logic

proof: the maximal clause C in S is the maximal clause in R(S)
and there are only finitely many clauses smaller than S

A Resolution Proof

1 -A | B. [assumption].
2 -B | C. [assumption].
3 A | -C. [assumption].
4 A | B | C. [assumption].
5 -A | -B | -C. [assumption].
6 A | B. [resolve(4,c,3,b),merge(c)].
7 A | C. [resolve(6,b,2,a)].
8 A. [resolve(7,b,3,b),merge(b)].
9 -B | -C. [back_unit_del(5),unit_del(a,8)].
10 B. [back_unit_del(1),unit_del(a,8)].
11 -C. [back_unit_del(9),unit_del(a,10)].
12 $F. [back_unit_del(2),unit_del(a,10),unit_del(b,11)].

First-Order Resolution

idea:

• transform formulas in prenex form
(quantfier prefix followed by quantifier free formula)
• Skolemise existential quantifiers ∀~x∃y.φ ⇒ ∀~x.φ[f(~x)/y]
• drop universal quantifiers
• transform in CNF

fact: Skolemisation preserves satisfiability

example: ∀x.R(x, x) ∧ (∃y.P (y) ∨ ∀x.∃y.R(x, y) ∨ ∀z.Q(z)) becomes
∀x.R(x, x) ∧ (P (a) ∨ ∀x.R(x, f(x)) ∨ ∀z.Q(z))

First-Order Resolution

motivation:

• the premises P (f(x, a) and ¬P (f(y, z) ∨ ¬P (f(z, y))
imply ¬P (f(a, x)
• this conclusion is most general with respect to instantiation
• it can be obtained from the mgu of f(x, a) and f(z, y) etc

first-order resolution:

• don’t instantiate, unify (less junk in resolution closure)
• unification instead of identification

Γ ∨ P ∆ ∨ ¬P ′

(Γ ∨∆)σ
Γ ∨ P ∨ P ′

(Γ ∨ P)σ
σ = mgu(P, P ′)

Lifting

question: are all ground inferences instances of non-ground ones?

theorem: (lifting lemma)

• let res(C1, C2) denote the resolvent of C1 and C2

• let C1 and C2 have no variables in common
• let σ be substitution

then res(C1σ,C2σ) = res(C1, C2)ρ for some substitution ρ

remark: similar property for factoring

consequences: (refutational completeness)

• if clause set is closed then set of all ground instances is closed
• resolution derives the empty clause from all inconsistent inputs

Redundancy

question:

• KB-completion allows the deletion of redundant equations
• is this possible for resolution?

idea: basis construction

• compute resolution closure
• then delete all clauses that are entailed by other clauses
• but model construction “forgets” what happened in the past
• clauses entailed by smaller clauses need not be inspected
• they can never contribute to model or become counterexamples
• can deletion of redundant clauses be stratified?
• can that be formalised?

Redundancy

idea: approximate notion of redundancy with respect to clause ordering

definition:

• clause C is redundant with respect to clause set Γ
if for some finite Γ′ ⊆ Γ

Γ′ |= C and C > Γ′

• resolution inference is redundant if its conclusion is entailed by one of the
premises and smaller clauses (more or less)

fact: it can be shown that resolution is refutationally complete up to redundancy

intuition: construction of ordered resolution bases

Redundancy

examples:

• tautologies are redundant (they are entailed by the empty set of clauses)
• clause C ′ is subsumed by clause C if

Cσ ⊆ C ′

clauses that are subsumed are redundant

ATP in First-Order Logic with Equations

naive approach:

• equality is a prediate; axiomatise it
• . . . not very efficient

but KB-completion is very similar to ordered resolution
deduction and reduction techniques are combined

idea:

• integrate KB-completion/unfailing completion into ordered resolution
• this yields superposition calculus

Superposition Calculus

assumption: consider equality as only predicate (predicates as Boolean functions)

inference rules: (ground case)

• equality resolution
Γ ∨ t 6= t

Γ
• positive and negative superposition

Γ ∨ l = r ∆ ∨ s(. . . l . . .) = t

Γ ∨∆ ∨ s(. . . r . . .) = t

Γ ∨ l = r ∆ ∨ s(. . . l . . .) 6= t

Γ ∨∆ ∨ s(. . . r . . .) 6= t

• equality factoring
Γ ∨ s = t ∨ s = t′

Γ ∨ t 6= t′ ∨ s = t′

Superposition Calculus

operational meaning of rules:

• red terms must be “maximal” in respective equations and clauses
• equality resolution is resolution with “forgotten” reflexivity axiom
• superpositions are resolution with “forgotten” transitivity axiom
• equality factoring is resolution and factoring step with “forgotten” transitivity

consequence: equality axioms replaced by focused inference rules

property: equality factoring not needed for Horn clauses

model construction: adaptation of resolution case, integrating critical pair criteria

Model Construction

idea:

• force canonical TRS in resolution model construction
• this effectively constructs a congruence with respect to input equations
• the model constructed is the resulting quotient algebra

building models: partial model is set of rewrite rules

• inspect equational clauses in increasing order
• if clause is false, maximal equation s = t (s > t), and s in nf,

then throw s = t into model
• otherwise do nothing

Model Construction

ordering: make negative identities larger than positive ones

• associate s = t with multiset {s, t}
• associate s 6= t with multiset {s, s, t, t}

consequence: each stage yields convergent TRS for clauses

• termination holds since all equations are oriented and > wf
• (local) confluence holds since only reduced lhs are forced into model

Model Construction

refutational completeness: (Horn clauses) if R(S) doesn’t contain
the empty clause then construction yields model for S

proof: by wf induction

1. failing construction has minimal counterexample C
2. C = Γ ∨ s = s impossible since C must be false
3. C = Γ ∨ s = t, hence s must be reducible by rule l→ r

generated by clause ∆ ∨ l = r and positive superposition yields
smaller counterexample Γ ∨∆ ∨ s(. . . r . . .) = t

4. C = Γ ∨ s 6= s, then equality resolution yields smaller counterexample Γ
5. C = Γ ∨ s 6= t, then exists rewrite proof for s = t, hence s reducible

by rule l→ r generated by ∆ ∨ l = r and negative superposition
yields smaller counterexample Γ ∨∆ ∨ s(. . . r . . .) 6= t

Example

let f � a � b � c � d

Horn clauses partial models
c = d

f(d) 6= d ∨ a = b
f(c) = d {c→ d}
c = d

f(d) 6= d ∨ a = b
f(c) = d
f(d) = d {c→ d, f(d)→ d}
c = d

f(d) 6= d ∨ a = b
f(c) = d
f(d) = d

d 6= d ∨ a = b {c→ d, f(d)→ d, a→ b}

Model Construction

non-Horn case: C = Γ ∨ s = t ∨ s = t′ false, t > t′ and t = t′ has rewrite proof,
then equality factoring yields smaller counterexample Γ ∨ t 6= t′ ∨ s = t′

non-ground case: (lifting)

• do construction at level of ground instances
• for skeleton overlaps use superposition etc
• for variable overlaps, maximal term can be instantiated

with rhs of reducing rule to obtain smaller counterexample

Redundancy

forward redundancy: simplify new clauses immediately after generation
(by subsumption, rewriting, . . .)

backward redundancy: simplify existing clauses by rewrite rules
that have been generated at later stage

Redundancy

example: consider lpo with precedence f � a � b and equations

f(a, x) = x

f(x, a) = f(x, b)

Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

f(a, b) = a

is obtained by superposition

Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

f(a, b) = a

b = a

then follows by rewriting the third equation by the first one. . .

Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

a = b

. . . and the third equation can be deleted (forward redundancy)

Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

a = b

f(x, b) = f(x, b)

then follows by rewriting the second equation by the third one. . .

Redundancy

example:

f(a, x) = x

a = b

. . . and the second and fourth identity can be deleted

Redundancy

example:

f(a, x) = x

a = b

f(b, x) = x

finally, the first equation can be rewritten by the second one. . .

Redundancy

example:

a = b

f(b, x) = x

. . . and then deleted

Redundancy

assign(order,lpo).

function_order([b,a,f]). % f>a>b

formulas(sos).

f(a,x)=x.
f(x,a)=f(x,b).

end_of_list.

Redundancy

given #1 (I,wt=5): 1 f(a,x) = x. [assumption].

given #2 (I,wt=7): 2 f(x,a) = f(x,b). [assumption].

given #3 (A,wt=3): 3 a = b. [para(2(a,1),1(a,1)),rewrite([1(3)]),flip(a)].

given #4 (T,wt=5): 5 f(b,x) = x. [back_rewrite(1),rewrite([3(1)])].

...

SEARCH FAILED

Redundancy

redundancy: same concepts as for ordered resolution

closure computation: only irredundant inferences

model construction: clause sets have models if they are closed
(up to redundant inferences) and don’t contain the empty clause

proof: as previously, but contradictions arising from inferences being redundant
example: positive superposition

Γ ∨ l = r ∆ ∨ s(. . . l . . .) = t

Γ ∨∆ ∨ s(. . . r . . .) = t

right premise has not been forced into model;
it is redundant by this inference (entailed by smaller premise and conclusion)

Redundancy

example: demodulation

P (f(a))

f(a) = a

Redundancy

example: demodulation

P (f(a))

f(a) = a

P (a)

by rewriting “Leibniz principle”

Redundancy

example: demodulation

f(a) = a

P (a)

first literal has been deleted since it is now redundant

Example

precedence: P � Q � f � a

clause set: initial clauses

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (f(a))

Example

precedence: P � Q � f � a

clause set: fifth clause by resolution from first and second one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (f(a))

f(a) = a

Example

precedence: P � Q � f � a

clause set: fourth clause rewritten by last one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (a)

f(a) = a

Example

precedence: P � Q � f � a

clause set: empty clause by resolution from third and fourth one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (a)

f(a) = a

⊥

Example

assign(order,lpo).

predicate_order([Q,P]). % P>Q
function_order([a,f]). % f>a

formulas(sos).

Q(a).
Q(a)->f(a)=a.
-P(a).
P(f(a)).

end_of_list.

Example

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 8.
% Level of proof is 4.
% Maximum clause weight is 6.
% Given clauses 2.

1 Q(a) -> f(a) = a # label(non_clause). [assumption].
2 Q(a). [assumption].
3 -Q(a) | f(a) = a. [clausify(1)].
4 -P(a). [assumption].
5 P(f(a)). [assumption].
6 f(a) = a. [hyper(3,a,2,a)].
7 P(a). [back_rewrite(5),rewrite([6(2)])].
8 $F. [resolve(7,a,4,a)].

Conclusion

automated theorem proving:

• integrates deduction, reduction and redundancy elimination
• uses rewriting techniques and complex reduction orderings
• sophisticated heuristics, algorithms, data structures make it very efficient
• powerful tool for first-order reasoning

(e.g. very good at textbook-level proofs in Boolean algebra)
• cannot deal with induction
• difficult to integrate decision procedures (lists, linear arithmetics, arrays, . . .)
• proofs rather incomprehensible

Conclusion

interesting research directions:

• reasoning in large theories (”hypothesis learning”)
• integration of decision procedures/higher-order features
• domain-specific provers
• provers for constructive logic
• provers for order-based reasoning
• IO standardisation/exchange formats

Literature

• A. Robinson and A. Voronkov: Handbook of Automated Reasoning

• F. Baader and T. Nipkow: Term Rewriting and All That

• “Terese” Term Rewriting Systems

• T. Hillenbrand: Waldmeister www.waldmeister.org

• W. McCune: Prover9 and Mace4 www.cs.unm.edu/∼mccune/mace4

• G. Sutcliffe and C. Suttner: The TPTP Problem Library
www.cs.miami.edu/∼tptp/

• extened version of slides (from Midlands Graduate School 2011) at my web site

