Automated Theorem Proving

Georg Struth

University of Sheffield

Motivation

everybody loves my baby but my baby don't love nobody but me

(Doris Day)

Mechanised Reasoning

past: different systems/communities

- interactive theorem provers (Coq, HOL, Isabelle, Agda, Epigram, ...)
- automated theorem provers (Prover9, Vampire, E, Spass, ...)
- SAT/SMT solvers and other special purpose tools

future: mechanised reasoning environments that integrate these tools

this lecture: automated theorem proving (ATP)

- how they work
- when they are useful
- what they can't do (currently)

Overview

main topics: we will discuss

- solving equations: term rewriting and Knuth-Bendix completion
- first-order reasoning: ordered resolution and saturation-based ATP
- some ATP modelling examples

tools used: Prover9, Mace4

Term Rewriting

example: Consider the following rules for monoids

$$(xy)z \to x(yz) \qquad 1x \to x \qquad x1 \to x$$

questions:

- does this yield normal forms?
- can we decide whether two monoid terms are equivalent?

Term Rewriting

examples: consider the following rules for the stack

 $top(push(x, y)) \rightarrow x$

 $pop(push(x, y)) \rightarrow y$ empty?(\perp) \rightarrow T empty?(push(x, y)) \rightarrow F

question: what about the rule

 $push(top(x), pop(x)) \rightarrow x$

which applies if empty?x = F?

terms: $T_{\Sigma}(X)$ denotes set of terms over signature Σ and variables from X

 $t ::= x \mid f(t_1, \dots t_n)$

constants are functions of arity 0

ground term: term without variables

remark: terms correspond to labelled trees

example: Boolean algebra

- signature $\{+, \cdot, -, 0, 1\}$
- +, \cdot have arity 2; ⁻ has arity 1; 0,1 have arity 0
- terms

 $+(x,y) \approx x+y \qquad \qquad \cdot (x,+(y,z)) \approx x \cdot (y+z)$

intuition: terms make the sides of equations

$$(x+y) + z = x + (y+z) \qquad x+y = y+x \qquad x = \overline{x} + \overline{y} + \overline{x} + y$$
$$x \cdot y = \overline{\overline{x} + \overline{y}}$$

substitution:

- partial map $\sigma: X \to T_{\Sigma}(X)$ (with finite domain)
- all occurrences of variables in $dom(\sigma)$ are replaced by some term
- "homomorphic" extension to terms, equations, formulas, . . .

example: for f(x, y) = x + y and $\sigma : x \mapsto x \cdot z, y \mapsto x + y$,

$$f(x,y)\sigma = f(x \cdot z, x+y) = (x \cdot z) + (x+y)$$

remark: substitution is different from replacement: replacing term s in term $r(\ldots s \ldots)$ by term t yields $r(\ldots t \ldots)$

 Σ -algebra: structure $(A, (f_A : A^n \to A)_{f \in \Sigma})$

interpretation (meaning) of terms

- assignment $\alpha: X \to A$ gives meaning to variables
- homomorphism $I_{\alpha}: T_{\Sigma}(X) \to A$
 - $I_{\alpha}(x) = \alpha(x)$ for all variables
 - $I_{\alpha}(c) = c_A$ for all constants
 - $I_{\alpha}(f(t_1,\ldots,t_n)) = f_A(I_{\alpha}(t_1),\ldots,I_{\alpha}(t_n))$

equations: $A \models s = t \Leftrightarrow I_{\alpha}(s) = I_{\alpha}(t)$ for all α .

examples:

- BA terms can be interpreted in BA $\{0,1\}$ via truth tables; row gives I_{α}
- operations on finite sets can be given as Cayley tables

Deduction and Reduction

equational reasoning: does E imply s = t?

- Proofs:
 - 1. use rules of equational logic
 - (reflexivity, symmetry, transitivity, congruence, substitution, Leibniz, ...)
 - 2. use rewriting (orient equations, look for canonical forms)
- Refutations: Find model A with $A \models E$ and $A \models s \neq t$

example: equations for Boolean algebra

- imply $x \cdot y = y \cdot x$ (prove it)
- but not x + y = x (find counterexample)

Rewriting

question: how can we effectively reduce to canonical form?

- reduction sequences must terminate
- reduction must be deterministic (diverging reductions must eventually converge)

example: the monoid rules generate canonical forms (why?)

Abstract Reduction

abstract reduction system: structure $(A, (R_i)_{i \in I})$

with set A and binary relations R_i

here: one single relation \rightarrow with

- $\bullet \ \leftarrow \ \text{converse of} \ \rightarrow$
- \rightarrow o \rightarrow relative product
- $\bullet \ \leftrightarrow = \rightarrow \cup \leftarrow$
- \rightarrow^+ transitive closure of \rightarrow
- $\bullet \ {\rightarrow}^*$ reflexive transitive closure of \rightarrow

remarks:

- \rightarrow^+ is transitive
- \rightarrow^* is preorder

Abstract Reduction

terminology:

- $a \in A$ reducible if $a \in dom(\rightarrow)$
- $a \in A$ normal form if $a \in dom(\rightarrow)$
- **b** normal form of **a** if $a \rightarrow^* b$ and **b** normal form
- $\rightarrow^* \circ \leftarrow^*$ is called rewrite proof

properties:

- Church-Rosser $\leftrightarrow^* \subseteq \rightarrow^* \circ \leftarrow^*$
- confluence $\leftarrow^* \circ \rightarrow^* \subseteq \rightarrow^* \circ \leftarrow^*$
- local confluence $\leftarrow \circ \rightarrow \subseteq \rightarrow^* \circ \leftarrow^*$
- wellfounded no infinite \rightarrow sequences
- convergence is confluence and wellfoundedness

Abstract Reduction

theorems: (canonical forms)

- Church-Rosser equivalent to confluence
- confluence equivalent to local confluence and wellfoundedness

intuition: local confluence yields local criterion for Church-Rosser property

termination proofs: let $(A, <_A)$ and (B, \leq_B) be posets with \leq_B wf then \leq_A wf if there is monotonic $f : A \to B$

intuition: reduce termination analysis to "well known" order like \mathbb{N}

Term Rewriting

term rewrite system: set R of rewrite rules $l \to r$ for $l, r \in T_{\Sigma}(X)$

one-step rewrite: $t(\ldots l\sigma \ldots) \rightarrow t(\ldots r\sigma \ldots)$ for $l \rightarrow r \in R$ and σ substitution (if l matches subterm of t then subterm is replaced by $r\sigma$)

rewrite relation: smallest \rightarrow_R containing R and closed under contexts (monotonic) and substitutions (fully invariant)

example: $1 \cdot (x \cdot (y \cdot z)) \rightarrow x \cdot (y \cdot z)$ is one-step rewrite with monoid rule $1 \cdot x \rightarrow x$ and substitution $\sigma : x \mapsto x \cdot (y \cdot z)$

Term Rewriting

fact: convergent TRSs can decide equational theories

theorem: (Birkhoff) $E \models \forall \vec{x} \cdot s = t \iff s \leftrightarrow_E^* t \iff \mathsf{cf}(s) = \mathsf{cf}(t)$

corollary: theories of finite convergent sets of equations are decidable

question: how can we turn E into convergent TRS?

Local Confluence in TRS

observation:

- local confluence depends on overlap of rewrite rules in terms
- if $l_1 \rightarrow r_1$ rewrites a "skeleton subterm" l'_2 of $l_2 \rightarrow r_2$ in some tthen $l_1\sigma_1$ and $l_2\sigma_2$ must be subterms of t and $l_1\sigma_1 = l'_2\sigma_2$
- if variables in l_1 and l'_2 are disjoint, then $l_1(\sigma_1 \cup \sigma_2) = l'_2(\sigma_1 \cup \sigma_2)$
- $\sigma_1 \cup \sigma_2$ can be decomposed into σ which "makes l_1 and l'_2 equal" and σ' which further instantiates the result

unifier of *s* and *t*: a substitution σ such that $s\sigma = t\sigma$

facts:

- if terms are unifiable, they have most general unifiers
- mgus are unique and can be determined by efficient algorithms

Unification

naive algorithm: (exponential in size of terms)

 $E, s = s \implies E$ $E, f(s_1, \dots, s_n) = f(t_1, \dots, t_n) \implies E, s_1 = t_1, \dots, s_n = t_n$ $E, f(\dots) = g(\dots) \implies \bot$ $E, t = x \implies E, x = t \quad \text{if } t \notin X$ $E, x = t \implies \bot \quad \text{if } x \neq t \text{ and } x \text{ occurs in } t$ $E, x = t \implies \bot \quad \text{if } x \neq t \text{ and } x \text{ occurs in } t$

Unification

example:

$$\begin{split} f(g(x,b),f(x,z)) &= f(y,f(g(a,b),c)) \\ & \Downarrow \\ & \ddots \\ & \downarrow \\ y &= g(g(a,b),b), \ x = g(a,b), \ z = c \end{split}$$

Critical Pairs

task: establish local confluence in TRS

question: how can rewrite rules overlap in terms?

- disjoint redexes (automatically confluent)
- variable overlap (automatically confluent)
- skeleton overlap (not necessarily confluent)

. . . see diagrams

conclusion: skeleton overlaps lead to equations that may not have rewrite proofs

Critical Pairs

critical pairs: $l_1 \sigma(\ldots r_2 \sigma \ldots) = r_1 \sigma$ where

- $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ rewrite rules
- σ mgu of l_2 and subterm l'_1 of l_1
- $l'_1 \notin X$

example: $x + (-x) \rightarrow 0$ and $x + ((-x) + y) \rightarrow y$ have cp x + 0 = -(-x)

theorem: A TRS is locally confluent iff all critical pairs have rewrite proofs

remark: confluence decidable for finite wf TRS (only finitely many cps must be inspected)

Wellfoundedness/Termination

fact: proving termination of TRSs requires complex constructions

lexicographic combination: for posets $(A_1, <_1)$ and $(A_2, <_2)$ define < of type $A_1 \times A_2$ by

 $(a_1, a_2) > (b_1, b_2) \iff a_1 >_1 b_1$, or $a_1 = b_1$ and $a_2 > b_2$

fact: $(A_1 \times A_2, <)$ is a poset and < is wf iff $<_1$ and $<_2$ are

Wellfoundedness/Termination

multiset over set A: map $m : A \to \mathbb{N}$

remark: consider only finite multisets

multiset extension: for poset (A, <) define < of type $(A \rightarrow \mathbb{N}) \times (A \rightarrow \mathbb{N})$ by

 $m_1 > m_2 \iff m_1 \neq m_2$ and $\forall a \in A.(m_2(a) > m_1(a) \Rightarrow \exists b \in A.(b > a \text{ and } m_1(b) > m_2(b)))$

fact: this is a partial order; it is wellfounded if the underlying order is

Reduction Orderings

idea: for finite TRS, inspect only finitely many rules for termination

reduction ordering: wellfounded partial ordering on terms such that all operations and substitutions are order preserving

fact: TRS terminates iff \rightarrow is contained in some reduction ordering

in practice: reduction orderings should have computable approximations (halting problem)

interpretation: reduction orderings are wf iff all ground instantiations are wf

Reduction Orderings

polynomial orderings:

- associate function terms with polynomial weight functions with integer coeficients
- checking ordering constraints can be undecidable (Hilbert's 10th problem)
- restrictions must be imposed

Reduction Orderings

simplification orderings: monotonic ordering on terms that contain the (strict) subterm ordering

theorem: simplification orderings over finite signatures are wf but not all wf orderings are simplification orderings

example: $ff x \rightarrow fgf x$ terminates and induces reduction ordering >

- 1. assume > is simplification ordering
- 2. f x is subterm of gf x, hence gf x > f x
- 3. then fgf x > ff x by monotonicity
- 4. so ff x > ff x, a contradiction
- 5. conclusion: wf not always captured by simplification ordering

Simplification Orderings

lexicographic path ordering: for precedence \succ on Σ define relation > on $T_{\Sigma}(X)$

- s > x if x proper subterm of s, or
- $s = f(s_1, ..., s_m) > g(t_1, ..., t_n) = t$ and
 - $s_i > t$ for some i or
 - $-f \succ g$ and $s > t_i$ for all i or
 - f = g, $s > t_i$ for all i and $(s_1, \ldots, s_m) > (t_1, \ldots, t_m)$ lexicographically

fact: Ipo is simplification ordering, it is total if the precedence is

variations:

- multiset path ordering: compare subterms as multisets
- recursive path ordering: function symbols have either lex or mul status
- Knuth-Bendix ordering: hybrid of weights and precedences

idea: take set of equations and reduction ordering

- orient equations into decreasing rewrite rules
- inspect all critial pairs and add resulting equations
- delete trivial equations
- if all equations can be oriented, KB-closure contains convergent TRS

extension: delete redundant expressions, e.g.

if $r \to s, s \to t \in R$, then adding $r \to t$ to R makes $r \to s$ redundant

therefore:

- KB-completion combines deduction and reduction
- this is essentially basis construction

rule based algorithm: let < be reduction ordering

- delete: $E, t = t, R \Rightarrow E, R$
- orient: $E, s = t, R \Rightarrow E, R, s \rightarrow t$ if s > t
- deduce: $E, R \Rightarrow E, s = t, R$ if s = t is cp from R
- simplify: $E, r = s, R \Rightarrow E, r = t, R$ if $s \rightarrow_R t$
- compose: $E, R, r \to s \Rightarrow E, R, r \to t$ if $s \to_R t$
- collapse: $E, R, r \rightarrow s \Rightarrow E, s = t, R$ if $r \rightarrow_R t$ rewrites strict subterm

remark: permutations in s = t are implicit

strategy: $(((simplify + delete)^*; (orient; (compose + collapse)^*))^*; deduce)^*$

properties: the following facts can be shown

- soundness: completion doesn't change equational theory
- correctness: if process is fair (all cps eventually computed) and all equations can be oriented, then limit yields convergent TRS "KB-basis"

main construction: use complex wf order on proofs to show that all completion steps decrease proofs, hence induce rewrite proofs

observation: completion need not succeed

- it can fail to orient persistent equations
- it can loop forever

fact: if completion succeeds, it yields canonical TRS (convergent and interreduced)

observation:

- KB-completion always succeeds on ground TRSs (congruence closure)
- KB-completion wouldn't fail when < is total
- but rules xy = yx can never be oriented

unfailing completion: only rewrite with equations when this causes decrease

- let $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$
- let l'_1 be "skeleton" subterm of l_1
- let σ be mgu of l'_1 and l_2
- let μ be substitution with $l_1 \sigma \mu \not\leq r_1 \sigma \mu$ and $l_1 \sigma \mu \not\leq l_1 \sigma (\dots r_2 \sigma \dots) \mu$

then $l_1\sigma(\ldots r_2\sigma\ldots) = r_1\sigma$ is ordered cp for deduction

remarks:

- unfailing completion is a complete ATP procedure for pure equations
- this has been implemented in the Waldmeister tool

example: groups

• input: appropriate ordering and equations

$$1 \cdot x = x \qquad x^{-1} \cdot x = 1 \qquad (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

• output: canonical TRS

$$1^{-1} \to 1 \qquad x \cdot 1 \to x \qquad 1 \cdot x \to x \qquad (x^{-1})^{-1} \to x$$
$$x^{-1} \cdot x \to 1 \qquad x \cdot x^{-1} \to 1 \qquad x^{-1} \cdot (x \cdot y) \to y$$
$$x \cdot (x^{-1} \cdot y) \to y \qquad (x \cdot y)^{-1} \to y^{-1} \cdot x^{-1} \qquad (x \cdot y) \cdot z \to x \cdot (y \cdot z)$$

example: groups (cont.)
proof of
$$(x^{-1} \cdot (x \cdot y))^{-1} = (x^{-1} \cdot y)^{-1} \cdot x^{-1}$$

 $(x^{-1} \cdot (x \cdot y))^{-1} \to_R y^{-1}$
 $\leftarrow_R y^{-1} \cdot 1$
 $\leftarrow_R y^{-1} \cdot ((x^{-1})^{-1} \cdot x^{-1})$
 $\leftarrow_R (y^{-1} \cdot (x^{-1})^{-1}) \cdot x^{-1}$
 $\leftarrow_R (x^{-1} \cdot y)^{-1} \cdot x^{-1}$
literals are either

- propositional variables P (positive literals) or
- negated propositional variables $\neg P$ (negative literals)

clauses are disjunctions (multisets) of literals

clause sets are conjunctions of clauses

property: every propositional formula is equivalent to a clause set (linear structure preserving algorithm)

orders: let S be clause set

- consider total wf order < on variables
- extend lexicographically to pairs (P, π) on literals where π is 0 for positive literals and 1 for negative ones
- compare clauses with the multiset extension of that order

consequence: < total wf order on S

building models: partial model H is set of positive literals

- inspect clauses in increasing order
- if clause is false and maximal literal P, throw P into H
- if clause is true, or false and maximal literal negative, do nothing

question: does this yield model of S?

first reason for failure: clause set $\{\Gamma \lor P \lor P\}$ has no model if P maximal

remedy: merge these literals (ordered factoring)

 $\frac{\Gamma \lor P \lor P}{\Gamma \lor P} \qquad \text{if } P \text{ maximal}$

second reason for failure: literals ordered according to indices

clauses	partial models
P_1	$\{P_1\}$
$P_0 \lor \neg P$	$\{P_1\}$
$P_3 \lor P_4$	$\{P_1, P_4\}$

 $\{P_1, P_4\} \not\models P_0 \lor \neg P_1$, but $\{P_0, P_1, P_4\} \models P_0 \lor \neg P_1$

remedy: add clause P_0 to set (it is entailed)

more generally: (ordered resolution)

$$\frac{\Gamma \lor P \qquad \Delta \lor \neg P}{\Gamma \lor \Delta} \qquad \text{ if } (\neg)P \text{ maxima}$$

resolution closure: (saturation) R(S)

theorem: If R(S) doesn't contain the empty clause then the construction yields model for S

proof: by wf induction

- 1. failing construction has minimal counterexample C
- 2. either positive maximal literal occurs more then once, then factoring yields smaller counterexample
- 3. or maximal literal is negative, then resolution yields smaller counterexample
- 4. both cases yield contradiction

corollary: R(S) contains empty clause iff S inconsistent

resolution proofs: (refutational completeness) empty clause can be derived from all finite inconsistent clause sets

proof: by closure construction, empty clause is derived after finitely many steps

theorem: (compactness) S is unsatisfiable iff some finite subset is

proof: use the hypotheses from refutation

theorem: resolution decides propositional logic

proof: the maximal clause C in S is the maximal clause in R(S) and there are only finitely many clauses smaller than S

A Resolution Proof

- 1 -A | B. [assumption].
- 2 -B | C. [assumption].
- 3 A | -C. [assumption].
- 4 A | B | C. [assumption].
- 5 A | B | C. [assumption].
- 6 A | B. [resolve(4,c,3,b),merge(c)].
- 7 A | C. [resolve(6,b,2,a)].
- 8 A. [resolve(7,b,3,b),merge(b)].
- 9 -B | -C. [back_unit_del(5), unit_del(a,8)].
- 10 B. [back_unit_del(1),unit_del(a,8)].
- 11 -C. [back_unit_del(9),unit_del(a,10)].
- 12 \$F. [back_unit_del(2), unit_del(a,10), unit_del(b,11)].

First-Order Resolution

idea:

- transform formulas in prenex form
 (quantfier prefix followed by quantifier free formula)
- Skolemise existential quantifiers $\forall \vec{x} \exists y. \phi \Rightarrow \forall \vec{x}. \phi[f(\vec{x})/y]$
- drop universal quantifiers
- transform in CNF

fact: Skolemisation preserves satisfiability

example: $\forall x.R(x,x) \land (\exists y.P(y) \lor \forall x.\exists y.R(x,y) \lor \forall z.Q(z))$ becomes $\forall x.R(x,x) \land (P(a) \lor \forall x.R(x,f(x)) \lor \forall z.Q(z))$

First-Order Resolution

motivation:

- the premises $P(f(x,a) \text{ and } \neg P(f(y,z) \vee \neg P(f(z,y)) \text{ imply } \neg P(f(a,x)$
- this conclusion is most general with respect to instantiation
- it can be obtained from the mgu of f(x, a) and f(z, y) etc

first-order resolution:

- don't instantiate, unify (less junk in resolution closure)
- unification instead of identification

$$\frac{\Gamma \lor P \quad \Delta \lor \neg P'}{(\Gamma \lor \Delta)\sigma} \qquad \frac{\Gamma \lor P \lor P'}{(\Gamma \lor P)\sigma} \qquad \sigma = mgu(P, P')$$

Lifting

question: are all ground inferences instances of non-ground ones?

theorem: (lifting lemma)

- let $res(C_1, C_2)$ denote the resolvent of C_1 and C_2
- let C_1 and C_2 have no variables in common
- let σ be substitution

then $\operatorname{res}(C_1\sigma, C_2\sigma) = \operatorname{res}(C_1, C_2)\rho$ for some substitution ρ

remark: similar property for factoring

consequences: (refutational completeness)

- if clause set is closed then set of all ground instances is closed
- resolution derives the empty clause from all inconsistent inputs

question:

- KB-completion allows the deletion of redundant equations
- is this possible for resolution?

idea: basis construction

- compute resolution closure
- then delete all clauses that are entailed by other clauses
- but model construction "forgets" what happened in the past
- clauses entailed by smaller clauses need not be inspected
- they can never contribute to model or become counterexamples
- can deletion of redundant clauses be stratified?
- can that be formalised?

idea: approximate notion of redundancy with respect to clause ordering

definition:

• clause C is redundant with respect to clause set Γ if for some finite $\Gamma' \subseteq \Gamma$

 $\Gamma' \models C$ and $C > \Gamma'$

• resolution inference is redundant if its conclusion is entailed by one of the premises and smaller clauses (more or less)

fact: it can be shown that resolution is refutationally complete up to redundancy

intuition: construction of ordered resolution bases

examples:

- tautologies are redundant (they are entailed by the empty set of clauses)
- clause C' is subsumed by clause C if

 $C\sigma \subseteq C'$

clauses that are subsumed are redundant

ATP in First-Order Logic with Equations

naive approach:

- equality is a prediate; axiomatise it
- . . . not very efficient
- **but** KB-completion is very similar to ordered resolution deduction and reduction techniques are combined

idea:

- integrate KB-completion/unfailing completion into ordered resolution
- this yields superposition calculus

Superposition Calculus

assumption: consider equality as only predicate (predicates as Boolean functions)

inference rules: (ground case)

• equality resolution

$$\frac{\Gamma \lor t \neq t}{\Gamma}$$

• positive and negative superposition

 $\frac{\Gamma \lor l = r \qquad \Delta \lor s(\dots l \dots) = t}{\Gamma \lor \Delta \lor s(\dots r \dots) = t} \qquad \frac{\Gamma \lor l = r \qquad \Delta \lor s(\dots l \dots) \neq t}{\Gamma \lor \Delta \lor s(\dots r \dots) \neq t}$

• equality factoring

$$\frac{\Gamma \lor s = t \lor s = t'}{\Gamma \lor t \neq t' \lor s = t'}$$

Superposition Calculus

operational meaning of rules:

- red terms must be "maximal" in respective equations and clauses
- equality resolution is resolution with "forgotten" reflexivity axiom
- superpositions are resolution with "forgotten" transitivity axiom
- equality factoring is resolution and factoring step with "forgotten" transitivity

consequence: equality axioms replaced by focused inference rules

property: equality factoring not needed for Horn clauses

model construction: adaptation of resolution case, integrating critical pair criteria

idea:

- force canonical TRS in resolution model construction
- this effectively constructs a congruence with respect to input equations
- the model constructed is the resulting quotient algebra

building models: partial model is set of rewrite rules

- inspect equational clauses in increasing order
- if clause is false, maximal equation s = t (s > t), and s in nf, then throw s = t into model
- otherwise do nothing

ordering: make negative identities larger than positive ones

- associate s = t with multiset $\{s, t\}$
- associate $s \neq t$ with multiset $\{s, s, t, t\}$

consequence: each stage yields convergent TRS for clauses

- termination holds since all equations are oriented and > wf
- (local) confluence holds since only reduced lhs are forced into model

refutational completeness: (Horn clauses) if R(S) doesn't contain the empty clause then construction yields model for S

proof: by wf induction

- 1. failing construction has minimal counterexample C
- 2. $C = \Gamma \lor s = s$ impossible since C must be false
- 3. $C = \Gamma \lor s = t$, hence s must be reducible by rule $l \to r$ generated by clause $\Delta \lor l = r$ and positive superposition yields smaller counterexample $\Gamma \lor \Delta \lor s(\dots r \dots) = t$
- 4. $C = \Gamma \lor s \neq s$, then equality resolution yields smaller counterexample Γ
- 5. $C = \Gamma \lor s \neq t$, then exists rewrite proof for s = t, hence s reducible by rule $l \to r$ generated by $\Delta \lor l = r$ and negative superposition yields smaller counterexample $\Gamma \lor \Delta \lor s(\dots r \dots) \neq t$

Example

let $f \succ a \succ b \succ c \succ d$

Horn clauses	partial models
c = d	
$f(d) eq d \lor a = b$	
f(c) = d	$\{c ightarrow d\}$
c = d	
$f(d) eq d \lor a = b$	
f(c) = d	
f(d) = d	$\{c \to d, f(d) \to d\}$
c = d	
$f(d) \neq d \lor a = b$	
f(c) = d	
f(d) = d	
$d \neq d \lor a = b$	$\{c \to d, f(d) \to d, a \to b\}$

non-Horn case: $C = \Gamma \lor s = t \lor s = t'$ false, t > t' and t = t' has rewrite proof, then equality factoring yields smaller counterexample $\Gamma \lor t \neq t' \lor s = t'$

non-ground case: (lifting)

- do construction at level of ground instances
- for skeleton overlaps use superposition etc
- for variable overlaps, maximal term can be instantiated with rhs of reducing rule to obtain smaller counterexample

forward redundancy: simplify new clauses immediately after generation (by subsumption, rewriting, . . .)

backward redundancy: simplify existing clauses by rewrite rules that have been generated at later stage

example: consider lpo with precedence $f \succ a \succ b$ and equations

f(a, x) = xf(x, a) = f(x, b)

example:

f(a, x) = xf(x, a) = f(x, b)f(a, b) = a

is obtained by superposition

example:

f(a, x) = xf(x, a) = f(x, b)f(a, b) = ab = a

then follows by rewriting the third equation by the first one. . .

example:

f(a, x) = xf(x, a) = f(x, b)

a = b

... and the third equation can be deleted (forward redundancy)

example:

f(a, x) = xf(x, a) = f(x, b)a = bf(x, b) = f(x, b)

then follows by rewriting the second equation by the third one. . .

example:

$$f(a, x) = x$$

a = b

... and the second and fourth identity can be deleted

example:

f(a, x) = xa = bf(b, x) = x

finally, the first equation can be rewritten by the second one. . .

example:

a = bf(b, x) = x

. . . and then deleted

```
assign(order,lpo).
```

```
function_order([b,a,f]). % f>a>b
```

formulas(sos).

f(a,x)=x.f(x,a)=f(x,b).

end_of_list.

given #1 (I,wt=5): 1 f(a,x) = x. [assumption].

given #2 (I,wt=7): 2 f(x,a) = f(x,b). [assumption].

given #3 (A,wt=3): 3 a = b. [para(2(a,1),1(a,1)),rewrite([1(3)]),flip(a)].

given #4 (T,wt=5): 5 f(b,x) = x. [back_rewrite(1),rewrite([3(1)])].

SEARCH FAILED

. . .

redundancy: same concepts as for ordered resolution

closure computation: only irredundant inferences

model construction: clause sets have models if they are closed (up to redundant inferences) and don't contain the empty clause

proof: as previously, but contradictions arising from inferences being redundant example: positive superposition

$$\frac{\Gamma \lor l = r \qquad \Delta \lor s(\dots l \dots) = t}{\Gamma \lor \Delta \lor s(\dots r \dots) = t}$$

right premise has not been forced into model;

it is redundant by this inference (entailed by smaller premise and conclusion)

example: demodulation

P(f(a))f(a) = a

example: demodulation

P(f(a))f(a) = aP(a)

by rewriting "Leibniz principle"

example: demodulation

f(a) = aP(a)

first literal has been deleted since it is now redundant
precedence: $P \succ Q \succ f \succ a$

clause set: initial clauses

Q(a) $Q(a) \Rightarrow f(a) = a$ $\neg P(a)$ P(f(a))

precedence: $P \succ Q \succ f \succ a$

clause set: fifth clause by resolution from first and second one

Q(a) $Q(a) \Rightarrow f(a) = a$ $\neg P(a)$ P(f(a))f(a) = a

precedence: $P \succ Q \succ f \succ a$

clause set: fourth clause rewritten by last one

Q(a) $Q(a) \Rightarrow f(a) = a$ $\neg P(a)$ f(a) = a

precedence: $P \succ Q \succ f \succ a$

clause set: empty clause by resolution from third and fourth one

Q(a) $Q(a) \Rightarrow f(a) = a$ $\neg P(a)$ f(a) = a \bot

```
assign(order,lpo).
```

```
predicate_order([Q,P]). % P>Q
function_order([a,f]). % f>a
```

```
formulas(sos).
```

```
Q(a).
Q(a)->f(a)=a.
-P(a).
P(f(a)).
```

end_of_list.

```
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 8.
% Level of proof is 4.
% Maximum clause weight is 6.
% Given clauses 2.
1 Q(a) -> f(a) = a # label(non_clause). [assumption].
2 Q(a). [assumption].
3 -Q(a) | f(a) = a. [clausify(1)].
4 -P(a). [assumption].
5 P(f(a)). [assumption].
5 P(f(a)). [assumption].
6 f(a) = a. [hyper(3,a,2,a)].
7 P(a). [back_rewrite(5),rewrite([6(2)])].
8 $F. [resolve(7,a,4,a)].
```

Conclusion

automated theorem proving:

- integrates deduction, reduction and redundancy elimination
- uses rewriting techniques and complex reduction orderings
- sophisticated heuristics, algorithms, data structures make it very efficient
- powerful tool for first-order reasoning (e.g. very good at textbook-level proofs in Boolean algebra)
- cannot deal with induction
- difficult to integrate decision procedures (lists, linear arithmetics, arrays, . . .)
- proofs rather incomprehensible

Conclusion

interesting research directions:

- reasoning in large theories ("hypothesis learning")
- integration of decision procedures/higher-order features
- domain-specific provers
- provers for constructive logic
- provers for order-based reasoning
- IO standardisation/exchange formats

Literature

- A. Robinson and A. Voronkov: Handbook of Automated Reasoning
- F. Baader and T. Nipkow: Term Rewriting and All That
- "Terese" Term Rewriting Systems
- T. Hillenbrand: Waldmeister www.waldmeister.org
- W. McCune: Prover9 and Mace4 www.cs.unm.edu/~mccune/mace4
- G. Sutcliffe and C. Suttner: The TPTP Problem Library www.cs.miami.edu/~tptp/
- extened version of slides (from Midlands Graduate School 2011) at my web site