University of Cambridge
Computer Laboratory
Dr Tjark Weber

Interactive Formal Verification (L21)

1 Regular Expressions

This assignment will be assessed to determine 50% of your final mark. Please complete the indicated tasks and write a brief document explaining your work. You may prepare this document using Isabelle's theory presentation facility, but this is not required. (A very simple way to print a theory file legibly is to use the Proof General command Isabelle > Commands > Display draft. You can combine the resulting output with a document produced using your favourite word processing package.) A clear write-up describing elegant, clearly structured proofs of all tasks will receive maximum credit.
You must work on this assignment as an individual. Collaboration is not permitted.
Consider reading, e.g., http://en.wikipedia.org/wiki/Regular_expression to refresh your knowledge of regular expressions.

For this assignment, we define regular expressions (over an arbitrary type 'a of characters) as follows:

1. \emptyset is a regular expression.
2. ε is a regular expression.
3. If c is of type 'a, then $\operatorname{Atom}(c)$ is a regular expression.
4. If x and y are regular expressions, then $x y$ is a regular expression.
5. If x and y are regular expressions, then $x+y$ is a regular expression.
6. If x is a regular expression, then x^{*} is a regular expression.

Nothing else is a regular expression.
\triangleright Define a corresponding Isabelle/HOL data type. (Your concrete syntax may be different from that used above. For instance, you could write Star x for x^{*}.)

```
datatype 'a regexp = EmptySet ("\emptyset")
    | EmptyWord
    | Atom 'a
    | Seq "'a regexp" "'a regexp" (infixl "." 70)
    | Sum "'a regexp" "'a regexp" (infixl "+" 65)
    | Star "'a regexp" ("_*" [80] 80)
```


1.1 Regular Languages

A word is a list of characters:
type_synonym 'a word = "'a list"
Regular expressions denote formal languages, i.e., sets of words. For x a regular expression, we define its language $L(x)$ as follows:

1. $L(\emptyset)=\emptyset$.
2. $L(\varepsilon)=\{[]\}$.
3. $L(\operatorname{Atom}(c))=\{[c]\}$.
4. $L(x y)=\{u v \mid u \in L(x) \wedge v \in L(y)\}$.
5. $L(x+y)=L(x) \cup L(y)$.
6. $L\left(x^{*}\right)$ is the smallest set that contains the empty word and is closed under concatenation with words in $L(x)$. That is, (i) [] $\in L\left(x^{*}\right)$, and (ii) if $u \in L(x)$ and $v \in L\left(x^{*}\right)$, then $u v \in L\left(x^{*}\right)$.
\triangleright Define a function L that maps regular expressions to their language.
```
inductive_set KleeneStar :: "’a word set \(\Rightarrow\) 'a word set"
    for \(x\) :: "'a word set" where
    KleeneStar_epsilon [simp]: "[] \(\in\) KleeneStar x"
| KleeneStar_step: "【u \(\in x ; v \in\) KleeneStar x \(\rrbracket \Longrightarrow u @ v \in K l e e n e S t a r ~ x " ~\)
fun \(L\) :: "'a regexp \(\Rightarrow\) 'a word set" where
    "L Ø = \{\}"
| "L \(\varepsilon=\{[]\} "\)
| "L (Atom c) = \{[c]\}"
```

```
| "L (x·y) = {u @ v | u v. u\inL x ^ v\inL y}"
| "L (x+y) = L x U L y"
| "L (x*) = KleeneStar (L x)"
```

\triangleright Prove the following lemma.
lemma KleeneStar_mono [simp]: "u $\in \mathrm{x} \Longrightarrow \mathrm{u} \in$ KleeneStar x"
by (metis append_Nil2 KleeneStar_epsilon KleeneStar_step)
lemma KleeneStar_append [simp]:
"【u \in KleeneStar $x ;$ v \in KleeneStar $x \rrbracket \Longrightarrow u @ v \in K l e e n e S t a r ~ x " ~$
by (induct u rule: KleeneStar.induct) (simp, simp add: KleeneStar_step)
lemma KleeneStar_idem:
"u \in KleeneStar (KleeneStar x) $\Longrightarrow u \in K l e e n e S t a r ~ x " ~$
by (induct u rule: KleeneStar.induct) simp_all
lemma "L (Star (Star x$)$) = L (Star x$)$ "
by auto (erule KleeneStar_idem)

1.2 Matching via Derivatives

We now consider regular expression matching: the problem of determining whether a given word is in the language of a given regular expression. You are about to develop your own verified regular expression matcher. We need some auxiliary notions first.

A regular expression is called nullable iff its language contains the empty word.
\triangleright Define a recursive function nullable x that computes (by recursion over x, i.e., without explicit use of L) whether a regular expression is nullable.

```
fun nullable :: "'a regexp # bool" where
    "nullable \emptyset = False"
| "nullable \varepsilon = True"
| "nullable (Atom c) = False"
| "nullable (x·y) = (nullable x ^ nullable y)"
| "nullable ( }x+y\mathrm{ ) = (nullable x V nullable y)"
| "nullable (x*) = True"
```

\triangleright Prove the following lemma.

```
lemma "nullable x = ([] \inL x)"
```

by (induct x) auto

The derivative of a language \mathcal{L} with respect to a word u is defined to be $\delta_{u} \mathcal{L}=\{v \mid u v \in \mathcal{L}\}$. For languages that are given by regular expressions, there is a natural algorithm to compute the derivative as another regular expression.
\triangleright Define a recursive function $\Delta c x$ that computes (by recursion over x) a regular expression whose language is the derivative of $L x$ with respect to the single-character word [c].

```
fun \Delta :: "'a }=>\mathrm{ 'a regexp }=>\mathrm{ 'a regexp" where
    "\Deltac\emptyset=\emptyset"
| "\Deltac\varepsilon=\emptyset"
| "\Delta c (Atom a) = (if c = a then \varepsilon else \emptyset)"
| "\Deltac (x\cdoty) = \Delta cx y y (if nullable x then \Delta c y else \emptyset)"
| "\Delta c (x+y) = \Delta c x + \Delta c y"
| "\Deltac (x*) = \Deltacx c x*"
```

Hint: nullable might come in handy.
\triangleright Prove the following lemma.
lemma KleeneStar_append_Cons [simp]:
$" \llbracket c \# u \in K l e e n e S t a r x ; v \in K l e e n e S t a r x \rrbracket \Longrightarrow c \# u @ v \in K l e e n e S t a r ~ x " ~$ by (metis KleeneStar_append append_Cons)
lemma KleeneStar_split_nonempty:
"c \# w \in KleeneStar $x \Longrightarrow \exists u v . w=u @ v \wedge c \# u \in x \wedge v \in K l e e n e S t a r x "$ by (induct "c \# w" rule: KleeneStar.induct) (auto simp add:
append_eq_Cons_conv)
Alternatively, we can introduce a fresh variable as an abbreviation for the term $\mathrm{c} \# \mathrm{w}$ that we want to induct over:
lemma "y \in KleeneStar $x \Longrightarrow y=c \# w \Longrightarrow \exists u v . w=u @ v \wedge c \# u \in x \wedge v \in$ KleeneStar x"
by (induct y rule: KleeneStar.induct) (auto simp add: append_eq_Cons_conv)

```
lemma "u \inL (\Delta c x) = (c#u \in L x)"
proof (induct x arbitrary: u)
    case Seq thus ?case
        by (auto simp add: nullable_correct) (metis append_Cons, metis
append_eq_Cons_conv)+
    case Star thus ?case
        by (auto simp add: KleeneStar_split_nonempty)
qed simp_all - the remaining cases are solved by simplification
```

Hint: see the Tutorial on Isabelle/HOL and the Tutorial on Isar for advanced induction
techniques.
\triangleright Define a recursive function δ that lifts Δ from single characters to words, i.e., $\delta \mathrm{ux}$ is a regular expression whose language is the derivative of $L x$ with respect to the word u.

```
fun \delta :: "'a word # 'a regexp # 'a regexp" where
    "\delta [] x = x"
| "\delta (c#cs) x = \delta cs (\Delta c x)"
```

\triangleright Prove the following lemma.

```
lemma "u \inL (\delta v x) = (v @ u \in L x)"
by (induct v arbitrary: x) (simp, simp add: Delta_correct)
```

To obtain a regular expression matcher, we finally observe that $u \in L x$ if and only if δu x is nullable.

```
definition match :: "'a word }=>\mathrm{ 'a regexp }=>\mathrm{ bool" where
    "match u x = nullable ( \delta u x)"
```

\triangleright Prove correctness of match.
theorem "match $u x=(u \in L x)$ "
by (simp add: match_def nullable_correct delta_correct)
\triangleright Solutions are due on Friday, June 17, 2011, at 12 noon. Please deliver a printed copy of the completed assignment to student administration by that deadline, and also send the corresponding Isabelle theory file to tw333@cam.ac.uk.

