
University of Cambridge
Computer Laboratory
Dr Tjark Weber

Easter Term 2010/11
Exercises 3: Solutions

May 27, 2011

Interactive Formal Verification (L21)

1 Sums of Powers, Polynomials

This assignment will be assessed to determine 50% of your final mark. Please complete the
indicated tasks and write a brief document explaining your work. You may prepare this
document using Isabelle’s theory presentation facility, but this is not required. (A very
simple way to print a theory file legibly is to use the Proof General command Isabelle >
Commands > Display draft. You can combine the resulting output with a document pro-
duced using your favourite word processing package.) A clear write-up describing elegant,
clearly structured proofs of all tasks will receive maximum credit.

You must work on this assignment as an individual. Collaboration is not permitted.

1.1 Sums of Powers

We consider sums of consecutive powers: Sp(n) =
∑n

k=1 kp.

� Define a corresponding function S p n.

definition S :: "nat ⇒ nat ⇒ nat" where
"S p n ≡

∑
k=1..n. k^p"

Hint: exponentiation and summation functions are already available in Isabelle/HOL.

Clearly, S0(n) = n. It is also well-known that S1(n) = n2+n
2

.

� Prove these identities.

lemma "S 0 n = n"

by (simp add: S_def)

lemma "2 * S 1 n = n^2 + n"

by (induct n) (auto simp add: S_def power2_eq_square)

At this point, we might suspect that Sp(n) is a polynomial in n with rational coefficients.



Figure 1: Visualization of Nicomachus’s theorem

� Verify this conjecture for p = 2, i.e., find k > 0 and a polynomial poly in n so that
k · S2(n) = poly . Prove the resulting identity.

lemma "6 * S 2 n = 2*n^3 + 3*n^2 + n" — replace k and poly

by (induct n) (auto simp add: S_def algebra_simps power2_eq_square

power3_eq_cube)

Hint: useful simplification rules for addition and multiplication are available as
algebra_simps. The Find theorems command can be used to discover further lemmas.

For p = 3, our conjecture follows from the astonishing identity
∑n

k=1 k3 = (
∑n

k=1 k)2, which
is known as Nicomachus’s theorem.

� Prove Nicomachus’s theorem.

lemma l1: "4 * S 3 n = (n^2 + n)^2"

by (induct n) (auto simp add: S_def algebra_simps power2_eq_square

power3_eq_cube)

lemma l2: "4 * (m::nat) = (2 * n)^2 =⇒ m = n^2"

by (simp add: power2_eq_square)

theorem "S 3 n = (S 1 n)^2"

by (simp only: l1 l2 gauss)

Before we could prove our conjecture for arbitrary p (which we will not do as part of this
assignment, but search for Faulhaber’s formula if you want to know more), we need to
define polynomials.

1.2 Polynomials

A polynomial in one variable can be given by the list of its coefficients: e.g., [0, 1
6
, 1

3
, 1

2
]

represents the polynomial 1
2
x3 + 1

3
x2 + 1

6
x + 0. (We list coefficients in reverse order, i.e.,

from lower to higher degree.)

2



Coefficients may be integers, rationals, reals, etc. In general, we require coefficients to be
elements of a commutative ring (cf. Rings.thy).

To every polynomial in one variable we can associate a polynomial function on the ring
of coefficients. This function’s value is obtained by substituting its argument for the
polynomial’s variable, i.e., by evaluating the polynomial.

� Define a function poly cs x so that poly [c0, c1, . . . , cn] x = cn x · . . . · x︸ ︷︷ ︸
n factors

+ . . . + c1x + c0.

fun poly :: "’a ::comm_ring list ⇒ ’a ::comm_ring ⇒ ’a ::comm_ring" where
"poly [] _ = 0"

| "poly (c#cs) x = c + x * poly cs x"

� Define a function poly_plus p q that computes the sum of two polynomials.

fun poly_plus :: "’a ::comm_ring list ⇒ ’a ::comm_ring list ⇒ ’a ::comm_ring list"

where
"poly_plus p [] = p"

| "poly_plus [] q = q"

| "poly_plus (p#ps) (q#qs) = (p + q) # poly_plus ps qs"

� Prove correctness of poly_plus.

lemma poly_plus_correct: "poly (poly_plus p q) x = poly p x + poly q x"

by (induct p q rule: poly_plus.induct) (auto simp add: algebra_simps)

Hint: Isabelle provides customized induction rules for recursive functions, e.g.,
poly_plus.induct. See the Tutorial on Function Definitions for details.

� Define a function poly_times p q that computes the product of two polynomials.

fun poly_times :: "’a ::comm_ring list ⇒ ’a ::comm_ring list ⇒ ’a ::comm_ring
list" where
"poly_times [] _ = []"

| "poly_times (p#ps) q = poly_plus (map (op * p) q) (poly_times ps (0 # q))"

� Prove correctness of poly_times.

lemma poly_map_times: "poly (map (op * c) p) x = c * poly p x"

by (induct p) (auto simp add: algebra_simps)

lemma "poly (poly_times p q) x = poly p x * poly q x"

by (induct p q rule: poly_times.induct) (auto simp add: algebra_simps

poly_plus_correct poly_map_times)

� Solutions are due on Friday, May 27, 2011, at 12 noon. Please deliver a printed

3



copy of the completed assignment to student administration by that deadline, and also
send the corresponding Isabelle theory file to tw333@cam.ac.uk.

4

mailto:tw333@cam.ac.uk

	Sums of Powers, Polynomials
	Sums of Powers
	Polynomials


