Interactive Formal Verification (L21)

1 Power, Sum

Power

\triangleright Define a (primitive recursive) function pow $\mathrm{x} n$ that computes x^{n} on natural numbers.

```
fun pow :: "nat }=>\mathrm{ nat }=>\mathrm{ nat" where
    "pow x 0 = Suc 0"
| "pow x (Suc n) = x * pow x n"
```

\triangleright Prove the well known equation $x^{m \cdot n}=\left(x^{m}\right)^{n}$:
theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named mult_ac.

```
lemma pow_add: "pow x (m + n) = pow x m * pow x n"
    apply (induct \(n\) )
    apply auto
done
theorem pow_mult: "pow x (m * n) = pow (pow x m) n"
    apply (induct n)
    apply (auto simp add: pow_add)
done
```


Summation

\triangleright Define a (primitive recursive) function sum ns that sums a list of natural numbers: $\operatorname{sum}\left[n_{1}, \ldots, n_{k}\right]=n_{1}+\cdots+n_{k}$.
fun sum :: "nat list \Rightarrow nat" where
"sum [] = 0"

```
| "sum (x#xs) = x + sum xs"
```

\triangleright Show that sum is compatible with rev. You may need a lemma.

```
lemma sum_append: "sum (xs @ ys) = sum xs + sum ys"
    apply (induct xs)
    apply auto
done
```

theorem sum_rev: "sum (rev ns) = sum ns"
apply (induct ns)
apply (auto simp add: sum_append)
done
\triangleright Define a function Sum $f k$ that sums f from 0 up to $k-1$: Sum $f k=f 0+\cdots+f(k-1)$.

```
fun Sum :: "(nat \(\Rightarrow\) nat) \(\Rightarrow\) nat \(\Rightarrow\) nat" where
    "Sum \(f 0=0\) "
| "Sum \(f(\operatorname{Suc} n)=\operatorname{Sum} f n+f n "\)
```

\triangleright Show the following equations for the pointwise summation of functions. Determine first what the expression whatever should be.

```
theorem "Sum ( \(\lambda i . f i+g\) i) \(k=\operatorname{Sum} f k+\operatorname{Sum} g k "\)
    apply (induct k)
    apply auto
done
```

```
theorem "Sum \(f(k+1)=\operatorname{Sum} f k+\operatorname{Sum}(\lambda i . f(k+i))\) l"
    apply (induct l)
    apply auto
done
```

\triangleright What is the relationship between sum and Sum? Prove the following equation, suitably instantiated.
theorem "Sum $f k=$ sum whatever"
Hint: familiarize yourself with the predefined functions map and [i..<j] on lists in theory List.

```
theorem "Sum f k = sum (map f [0..<k])"
    apply (induct k)
    apply (auto simp add: sum_append)
done
```

