Interactive Formal Verification (L21)

1 Replace, Reverse and Delete

\triangleright Define a function replace, such that replace x y zs yields z s with every occurrence of x replaced by y.

```
fun replace :: "'a # 'a # 'a list # 'a list" where
```

 "replace x y [] = []"
 | "replace x y (z\#zs) = (if z=x then y else z)\#(replace x y zs)"
\triangleright Prove or disprove (by counterexample) the following theorems. You may have to prove some lemmas first.

```
lemma replace_append: "replace x y (xs @ ys) = replace x y xs @ replace x y
ys"
    apply (induct "xs")
    apply auto
done
theorem "rev (replace x y zs) = replace x y (rev zs)"
    apply (induct "zs")
    apply (auto simp add: replace_append)
done
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
    quickcheck
oops
A possible counterexample: u=0, v=1, x=0, y=-1, zs=[0]
theorem "replace y z (replace x y zs) = replace x z zs"
    quickcheck
oops
A possible counterexample: \(\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=1, \mathrm{zs}=[0]\)
```

\triangleright Define two functions for removing elements from a list: del1 x xs deletes the first occurrence (from the left) of x in xs, delall x xs all of them.

```
fun del1 :: "'a # 'a list # 'a list" where
    "del1 x [] = []"
| "del1 x (y#ys) = (if y=x then ys else y # del1 x ys)"
fun delall :: "'a # 'a list }=>\mathrm{ 'a list" where
    "delall x [] = []"
| "delall x (y#ys) = (if y=x then delall x ys else y # delall x ys)"
```

\triangleright Prove or disprove (by counterexample) the following theorems.
theorem "del1 x (delall x xs) = delall x xs"
apply (induct "xs")
apply auto
done
theorem "delall x (delall x xs) = delall x xs"
apply (induct "xs")
apply auto
done
theorem delall_del1: "delall x (del1 x xs) = delall x xs"
apply (induct "xs")
apply auto
done
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
apply (induct "zs")
apply auto
done
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
apply (induct "zs")
apply (auto simp add: delall_del1)
done
theorem "delall x (delall y zs) = delall y (delall x zs)"
apply (induct "zs")
apply auto
done
theorem "del1 y (replace x y xs) = del1 x xs"
quickcheck

oops

A possible counterexample: $\mathrm{x}=1, \mathrm{xs}=[0], \mathrm{y}=0$

```
theorem "delall y (replace x y xs) = delall x xs"
```

 quickcheck
 oops

A possible counterexample: $\mathrm{x}=1, \mathrm{xs}=[0], \mathrm{y}=0$
theorem "replace x y (delall x zs) = delall x zs"
apply (induct "zs")
apply auto
done
theorem "replace x y (delall z zs) = delall z (replace x y zs)" quickcheck
oops
A possible counterexample: $\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=0, \mathrm{zs}=[1]$
theorem "rev (del1 x xs) = del1 x (rev xs)"
quickcheck
oops

A possible counterexample: $\mathrm{x}=1$, $\mathrm{xs}=[1,0,1]$
lemma delall_append: "delall x (xs @ ys) = delall x xs @ delall x ys" apply (induct "xs")
apply auto
done
theorem "rev (delall x xs) = delall x (rev xs)"
apply (induct "xs")
apply (auto simp add: delall_append)
done

