Interactive Formal Verification (L21)

1 Power, Sum

Power

\triangleright Define a (primitive recursive) function pow $\mathrm{x} n$ that computes x^{n} on natural numbers.

```
pow :: "nat => nat => nat"
```

\triangleright Prove the well known equation $x^{m \cdot n}=\left(x^{m}\right)^{n}$:
theorem pow_mult: "pow x (m * n) = pow (pow x m) n"
Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named mult_ac.

Summation

\triangleright Define a (primitive recursive) function sum ns that sums a list of natural numbers: $\operatorname{sum}\left[n_{1}, \ldots, n_{k}\right]=n_{1}+\cdots+n_{k}$.
sum :: "nat list \Rightarrow nat"
\triangleright Show that sum is compatible with rev. You may need a lemma.
theorem sum_rev: "sum (rev ns) = sum ns"
\triangleright Define a function Sum $f k$ that sums f from 0 up to $k-1$: Sum $f k=f 0+\cdots+f(k-1)$.

```
Sum :: "(nat # nat) => nat # nat"
```

\triangleright Show the following equations for the pointwise summation of functions. Determine first what the expression whatever should be.
theorem "Sum ($\lambda i . f i+g i$) $k=\operatorname{Sum} f k+\operatorname{Sum} g k "$
theorem "Sum $f(k+1)=\operatorname{Sum} f k+$ Sum whatever l "
\triangleright What is the relationship between sum and Sum? Prove the following equation, suitably instantiated.
theorem "Sum $f k=$ sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on lists in theory List.

