Interactive Formal Verification (L21)

1 Replace, Reverse and Delete

\triangleright Define a function replace, such that replace x y zs yields $z s$ with every occurrence of x replaced by y.

```
replace :: "'a # 'a # 'a list # 'a list"
```

\triangleright Prove or disprove (by counterexample) the following theorems. You may have to prove some lemmas first.

```
theorem "rev (replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"
```

\triangleright Define two functions for removing elements from a list: del1 x xs deletes the first occurrence (from the left) of x in xs, delall x xs all of them.

```
del1 :: "'a # 'a list # 'a list"
delall :: "'a # 'a list }=>\mathrm{ 'a list"
```

\triangleright Prove or disprove (by counterexample) the following theorems.

```
theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev (del1 x xs) = del1 x (rev xs)"
theorem "rev (delall x xs) = delall x (rev xs)"
```

