Statistical Machine Translation Lecture 3

Word Alignment Models

Stephen Clark

based on slides by Philipp Koehn

Statistical Machine Translation — Lecture 3: Word Alignment Models

Statistical Modeling

> Mary did not slap the green witch

```
Maria no daba una bofetada a la bruja verde
```

- Learn $P(f \mid e)$ from a parallel corpus
- Not sufficient data to estimate $P(f \mid e)$ directly

Statistical Machine Translation - Lecture 3: Word Alignment Models

Statistical Modeling (2)

- Break the process into smaller steps

Statistical Machine Translation — Lecture 3: Word Alignment Models

Statistical Modeling (3)

- Probabilities for smaller steps can be learned

Statistical Modeling (4)

- Generate a story how an English string e gets to be a foreign string f
- choices in story are decided by reference to parameters
- e.g., p(bruja|witch)
- Formula for $P(f \mid e)$ in terms of parameters
- usually long and hairy, but mechanical to extract from the story
- Training to obtain parameter estimates from incomplete data
- Expectation Maximisation (EM) algorithm

Parallel Corpora

- Incomplete data
- English and foreign words, but no connections between them
- Chicken and egg problem
- if we had the connections, we could estimate the parameters of our generative story
- if we had the parameters, we could estimate the connections

EM Algorithm

- Incomplete data
- if we had complete data, we could estimate model
- if we had model, we could fill in the gaps in the data
- EM in a nutshell
- initialize model parameters (e.g. uniform)
- assign probabilities to the missing data
- estimate model parameters from completed data
- iterate

EM Algorithm (2)

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all connections equally likely
- Model learns that, e.g., la is often connected with the

EM Algorithm (3)

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- After one iteration
- Connections, e.g., between la and the are more likely

EM Algorithm (4)

- After another iteration
- It becomes apparent that connections, e.g., between fleur and flower are more likely (pigeon hole principle)

EM Algorithm (5)

- Convergence
- Inherent hidden structure revealed by EM

EM Algorithm (6)

- Parameter estimation from the connected corpus

IBM Translation Models 1-5

- Choose a length for the French string, assuming all lengths to be equally likely (Models 1 and 2)
- For each position in the French string, connect it to the English and decide what French word to place there
- Model 1 assumes all connections equally likely (so the order of the words in e and f has no impact (!))
- Model 2 assumes the probability of a connection depends on the positions it connects and the lengths of the strings

IBM Translation Models 1-5

- In models 3, 4 and 5 we choose the number of words in f that connect to a particular English word, and then generate the French words
- In model 4 the probability of a connection depends in addition on the identites of the French and English words connected
- Models 3 and 4 are deficient - Model 5 is like Model 4 except it is not deficient
- Models 3 and 4 waste probability mass on objects that aren't French strings at all

IBM Translation Models 1-5

- Why bother with all these models?
- in particular why not just use Model 5, which makes less simplifying assumptions
- Models 1-4 serve as stepping stones to model 5
- Models 1 and 2 have a simple mathematical form so that iterations of EM can be performed exactly
- can perform sums over all possible alignments
- Also Model 1 has a unique maximum so can use Model 1 to provide initial estimates for future models

Statistical Machine Translation — Lecture 3: Word Alignment Models

Fundamental Equation

IBM Model 1

$$
p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a(j)}\right)
$$

- What is going on?
- foreign sentence $\mathbf{f}=f_{1} \ldots f_{m}$
- English sentence $\mathbf{e}=e_{1} \ldots e_{l}$
- each French word f_{j} is generated by an English word $e_{a(j)}$, as defined by the alignment function a, with the probabilty t
$-\epsilon=P(m \mid e)$ (can think of this as a constant normalisation factor)

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
- parts of the model are hidden (here: alignments)
- using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
- take assign values as fact
- collect counts (weighted by probabilities)
- estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM: Expectation Step

- Need the expected number of times word e connects to word f in translation ($\mathbf{f} \mid \mathbf{e}$)
- this is the (expected) count of f given e for $(\mathbf{f} \mid \mathbf{e})$

$$
c(f \mid e ; \mathbf{f}, \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a(j)}\right)
$$

- Sum with double delta is just a fancy way of denoting the number of times e connects to f in a

IBM Model 1 and EM: Expectation Step

- We need to compute $p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$

$$
p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})=p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) / p(\mathbf{f} \mid \mathbf{e})
$$

- We already have the formula for $p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

- We need to compute $p(\mathbf{f} \mid \mathbf{e})$

$$
\begin{aligned}
p(\mathbf{f} \mid \mathbf{e}) & =\sum_{\mathbf{a}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \\
& =\sum_{a_{1}=0}^{l} \ldots \sum_{a_{m}=0}^{l} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \\
& =\sum_{a_{1}=0}^{l} \cdots \sum_{a_{m}=0}^{l} \frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a(j)}\right) \\
& =\frac{\epsilon}{(l+1)^{m}} \sum_{a_{1}=0}^{l} \cdots \sum_{a_{m}=0}^{l} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a(j)}\right) \\
& =\frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} \sum_{i=0}^{l} t\left(f_{j} \mid e_{i}\right)
\end{aligned}
$$

- Note the trick in the last line
- removes the need for an exponential number of products
\rightarrow this makes IBM Model 1 estimation tractable

IBM Model 1 and EM: Expectation Step

- Combine what we have:

$$
\begin{aligned}
p(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) & =p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) / p(\mathbf{f} \mid \mathbf{e}) \\
& =\frac{\frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a(j)}\right)}{\frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} \sum_{i=0}^{l} t\left(f_{j} \mid e_{i}\right)} \\
& =\frac{\prod_{j=1}^{m} t\left(f_{j} \mid e_{a(j)}\right)}{\prod_{j=1}^{m} \sum_{i=0}^{l} t\left(f_{j} \mid e_{i}\right)} \\
& =\prod_{j=1}^{m} \frac{t\left(f_{j} \mid e_{a(j)}\right)}{\sum_{i=0}^{l} t\left(f_{j} \mid e_{i}\right)}
\end{aligned}
$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair e,f that word f is a translation of word e :

$$
c(f \mid e ; \mathbf{e}, \mathbf{f})=\sum_{\mathbf{a}} p(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a(j)}\right)
$$

- With the same simplication as before:

$$
c(f \mid e ; \mathbf{e}, \mathbf{f})=\frac{t(f \mid e)}{\sum_{i=0}^{l} t\left(f \mid e_{i}\right)} \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \sum_{i=0}^{l} \delta\left(e, e_{i}\right)
$$

IBM Model 1 and EM: Maximization Step

- After collecting these counts over a corpus, we can estimate the model:

$$
t(f \mid e ; \mathbf{e}, \mathbf{f})=\frac{\left.\sum_{(\mathbf{e}, \mathbf{f})} c(f \mid e ; \mathbf{e}, \mathbf{f})\right)}{\left.\sum_{f} \sum_{(\mathbf{e}, \mathbf{f})} c(f \mid e ; \mathbf{e}, \mathbf{f})\right)}
$$

IBM Model 1 and EM: Pseudocode

```
initialize t(f|e) uniformly
do
    set count(f|e) to 0 for all f,e
    set total(e) to 0 for all e
    for all sentence pairs (f_s,e_s)
        for all unique words f in f_s
            n_f = count of f in f_s
            total_s = 0
            for all unique words e in e_s
            total_s += t(f|e) * n_f
            for all unique words e in e_s
            n_e = count of e in e_s
            count(f|e) += t(f|e) * n_f * n_e / total_s
            total(e) += t(f|e) * n_f * n_e / total_s
    for all e in domain( total(.) )
            for all f in domain( count(.|e) )
            t(f|e) = count(f|e) / total(e)
```

until convergence

Notes on IBM Model 1

- Model 1 in a nutshell: see how many times f and e appear together in the same sentence!
- So why bother with all this formalisation?
- allows us to make our assumptions explicit
- we can build on this simple model by relaxing some of the assumptions, and extending the mathematics
- Final parameter estimates do not depend on the initial assignments
- likelihood function has a single maximum in this case
- Estimates from Model 1 can be used to initialise Model 2

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Compuationally biggest change in Model 3
- trick to simplify estimation does not work anymore
\rightarrow exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

