
${Unix_Tools}

Markus Kuhn

Computer Laboratory

http://www.cl.cam.ac.uk/teaching/0910/UnixTools/

Michaelmas 2009 – Part IB

Why do we teach Unix Tools?
→ Second most popular OS family (after Microsoft Windows)

→ Many elements of Unix have became part of common computer
science folklore, terminology & tradition over the past 25 years
and influenced many other systems (including DOS/Windows)

→ Many Unix tools have been ported and become popular on
other platforms, full Unix environment in MacOS X, Cygwin

→ Your future project supervisors and employers are likely to ex-
pect you to be fluent under Unix as a development environment

→ Good examples for high-functionality user interfaces

This short lecture course can only give you a first overview. You need
to spend at least 2–3 times as many hours with e.g. PWF Linux to

→ explore the tools mentioned

→ solve exercises (which often involve reading documentation to
understand important details skipped in the lecture)

2

Brief review of Unix history

→ “First Edition” developed at AT&T Bell Labs during 1968–71
by Ken Thompson and Dennis Ritchie for a PDP 11

→ Rewritten in C in 1973

→ Sixth Edition (1975) first widely available version

→ Seventh Edition in 1979, UNIX 32V for VAX

→ During 1980s independent continued development at AT&T
(“System V Unix”) and Berkeley University (“BSD Unix”)

→ Commercial variants (Solaris, SCO, HP/UX, AIX, IRIX, . . .)

→ IEEE and ISO standardisation of a Portable Operating System
Interface based on Unix (POSIX) in 1989, later also Single Unix
Specification by X/Open, both merged in 2001
The POSIX standard is freely available online: http://www.unix.org/version3/

3

A brief history of free Unix

→ In 1983, Richard Stallman (MIT) initiates a free reimplemen-
tation of Unix called GNU (“GNU’s Not Unix”) leading to an
editor (emacs), compiler (gcc), debugger (gdb), and numerous
other tools.

→ In 1991, Linus Torvalds (Helsinki CS undergraduate) starts de-
velopment of a free POSIX-compatible kernel, later nicknamed
Linux, which was rapidly complemented by existing GNU tools
and contributions from volunteers and industry to form a full
Unix replacement.

→ Berkeley University releases a free version of BSD Unix in 1991
after removing remaining proprietary AT&T code. Volunteer
projects emerge to continue its development (FreeBSD, Net-
BSD, OpenBSD).

4

Free software license concepts

→ public domain: authors waive all copyright

→ “MIT/BSD” licences: allow you to copy, redistribute and
modify the software in any way as long as

• you respect the identity and rights of the author
(preserve copyright notice and licence terms in source code
and documentation)

• you agree not sue the author over software quality
(accept exclusion of liability and warranty)

→ GNU General Public Licence: requires in addition that

• any modifications are again covered by the GPL and must
be made publicly available as source code

Numerous refinements of these licences have been written. More information on the various types
and their philosophies is collected, for example, on http://www.opensource.org/.

5

Original Unix user interfaces
The initial I/O devices were teletype terminals . . .

Photo: Bell Labs

6

. . . and later video display
terminals such as the
DEC VT100, all providing
80 characters-per-line
fixed-width ASCII output.
Their communications
protocol is still used today
in graphical windowing
environments via
“terminal emulators”
(e.g., xterm, konsole).

The VT100 was the first video terminal with microprocessor, and the first to implement the

ANSI X3.64 (= ECMA-48) control functions. For instance, “ESC[7m” activates inverse mode
and “ESC[0m” returns to normal, where ESC is the ASCII control character encoded by byte 27.

http://www.vt100.net/

http://www.cs.utk.edu/~shuford/terminal/dec.html

http://www.ecma-international.org/publications/standards/Ecma-048.htm

man console_codes

7

Unix tools design philosophy

→ Compact and concise input syntax, making full use of ASCII
repertoire to minimise keystrokes

→ Output format should be simple and easily usable as input for
other programs

→ Programs can be joined together in “pipes” and “scripts” to
solve more complex problems

→ Each tool originally performed a simple single function

→ Prefer reusing existing tools with minor extension to rewriting
a new tool from scratch

→ The main user-interface software (“shell”) is a normal replace-
able program without special privileges

→ Support for automating routine tasks

8

Unix documentation
Most Unix documentation can be read from the command line.
Classic manual sections: user commands (1), system calls (2), library
functions (3), devices (4), file formats (5).

→ The man tool searches for the manual page file (→ $MANPATH)
and activates two further tools (nroff text formatter and more

text-file viewer). Add optional section number to disambiguate:

$ man 3 printf # C subroutine, not command

Honesty in documentation: Unix manual pages traditionally include a BUGS section.

→ xman: X11 GUI variant, offers a table of contents

→ info: alternative GNU hypertext documentation system
Invoke with info from the shell of with C-h i from emacs. Use M(enu) key to select
topic or [Enter] to select hyperlink under cursor, N(ext)/P(rev)/U(p)/D(irectory) to
navigate document tree, Emacs search function (Ctrl-S), and finally Q(uit).

→ Check /usr/share/doc/ and Web for further documentation.

9

Examples of Unix tools

man, apropos, xman, info
help/documentation browser

more, less
plaintext file viewer

ls, find
list/traverse directories, search

cp, mv, rm, touch, ln
copy, move/rename, remove, renew
files, link/shortcut files

mkdir, rmdir
make/remove directories

cat, dd, head, tail
concatenate/split files

du, df, quota, rquota
examine disk space used and free

ps, top, free, uptime, w
process table and system load

vi, emacs, pico
interactive editors

cc, gcc
C compilers

make
project builder

cmp, diff, patch
compare files, apply patches

sccs, rcs, cvs, svn, hq, git
revision control systems

adb, gdb
debuggers

awk, perl, python, tcl
scripting languages

m4, cpp
macro processors

sed, tr
edit streams, replace characters

sort, grep, cut
sort/search lines of text, extract
columns

10

nroff, troff, tex, latex
text formatters

mail, pine, mh, exmh, elm
electronic mail user agents

telnet, ftp, rlogin, finger,

talk, ping, traceroute,

wget, ssh, scp, hostname,

host, ifconfig, route
network tools

xterm
VT100 terminal emulator

tar, cpio, compress, zip,

gzip, bzip2
file packaging and compression

echo, cd, pushd, popd, exit,

ulimit, time, history
builtin shell commands

fg, bg, jobs, kill
builtin shell job control

date, xclock
clocks

which, whereis
locate command file

clear, reset
clear screen, reset terminal

stty
configure terminal driver

xv, display, ghostview,

acroread
graphics file viewers

xfig, tgif, gimp
graphics drawing tools

topnm, pnmto, [cd]jpeg
graphics format converters

passwd
change your password

chmod
change file permissions

lex, yacc, flex, bison
scanner/parser generators

11

The Unix shell

→ The user program that Unix starts automatically after a login

→ Allows the user to interactively start, stop, suspend, and re-
sume other programs and control the access of programs to
the terminal

→ Supports automation by executing files of commands (“shell
scripts”), provides programming language constructs (variables,
string expressions, conditional branches, loops, concurrency)

→ Simplifies file selection via keyboard (regular expressions, file
name completion)

→ Simplifies entry of command arguments with editing and history
functions

→ Most common shell (“sh”) developed 1975 by Stephen Bourne,
modern GNU replacement is “bash” (“Bourne-Again SHell”)

12

Unix inter-process communication
mechanisms

Process
semaphores

shared memory

sockets

messages

command line arguments

environment variables

current directory

files and pipes

standard input/output/error

signals

priority

supported by shellnot supported by shell

invocation
return value

execution time

resource limits, umask

13

Command line arguments, return value,
environment variables

A Unix C program is invoked by calling its main() function with:

→ a list of strings argv as an argument

→ a list of strings environ as a predefined global variable

#include <stdio.h>

extern char **environ;

int main(int argc, char **argv)

{

int i;

printf("Command line arguments:\n");

for (i = 0; i < argc; i++)

puts(argv[i]);

printf("Environment:\n");

for (i = 0; environ[i] != NULL; i++)

puts(environ[i]);

return 0;

}

Environment strings have the form

name =value

where name is free of “=”.

Argument argv[0] is usually the
name or path of the program.

Convention: main() == 0 signals
success, other values signal errors
to calling process.

14

File descriptors
Unix processes access files in three steps:

→ Provide kernel in open() or creat() system call a path name
and get in return an integer “file descriptor”.

→ Provide in read(), write(), and seek() system calls an
opened file descriptor along with data.

→ Finally, call close() to release any data structures associated
with an opened file (position pointer, buffers, etc.).

The lsof tool lists the files currently opened by any process. Under Linux, file descriptor lists
and other kernel data can be accessed via the simulated file system mounted under /proc.

As a convention, the shell opens three file descriptors for each process:

→ 0 = standard input (for reading the data to be processed)

→ 1 = standard output (for the resulting output data)

→ 2 = standard error (for error messages)

15

Basic shell notations

Start a program and connect the three default file descriptors stdin,
stdout, and stderr to the terminal:

$ command

Connect stdout of command1 to stdin of command2 and stdout of
command2 to stdin of command3 by forming a pipe:

$ command1 | command2 | command3

Also connects terminal to stdin of command1, to stdout of command3, and to stderr of all three.

Note how this function concatenation notation makes the addition of
command arguments somewhat clearer compared to the mathematical
notation command3(command2(command1(arg1), arg2), arg3):

$ ls -la | sort -n -k5 | less

16

Execute several commands or entire pipes in sequence:

$ command1 ; command2 ; command3

For example:

$ date ; host linux2

Wed Sep 29 23:52:31 BST 2004

linux2.pwf.cl.cam.ac.uk has address 193.60.95.68

Conditional execution depending on success of previous command (as
in logic-expression short-cut):

$ make ftest && ./ftest

$./ftest || echo 'Test failed!'

Return value 0 for success is interpreted as Boolean value “true”, other return values for problems
or failure as “false”. The trivial tools true and false simply return 0 and 1, respectively.

17

File redirecting

Send stdout to file

$ command >filename

Append stdout to file

$ command >>filename

Send both stdout and stderr to the same file. First redirect stdout to
filename, then redirect stderr (file descriptor 2) to where stdout goes
(target of file descriptor 1 = &1):

$ command >filename 2>&1

Feed stdin from file

$ command <filename

18

Open other file descriptors for input, output, or both

$ command 0<in 1>out 2>>log 3<auxin 4>auxout 5<>data

“Here Documents” allow us to insert data into shell scripts directly
such that the shell will feed it into a command via standard input. The
<< is followed immediately by an end-of-text marker string.

$ tr <<THEEND A-MN-Za-mn-z N-ZA-Mn-za-m

> Vs lbh zhfg cbfg n ehqr wbxr ba HFRARG, ebgngr gur

> nycunorg ol 13 punenpgref naq nqq n jneavat.

> THEEND

Redirecting to or from /dev/tcp/hostname /port will open a TCP
socket connection:

{ echo "GET /~mgk25/iso-paper.c" >&3 ; cat <&3 ; } \

3<>/dev/tcp/www.cl.cam.ac.uk/80

The above example is a bash implementation of a simple web browser. It downloads and displays
the file http://www.cl.cam.ac.uk/~mgk25/iso-paper.c.

19

Command-line argument conventions

Each program receives from the caller as a parameter an array of strings
(argv). The shell places into the argv parameters the words entered
following the command name, after several preprocessing steps have
been applied first.

Command options are by convention single letters prefixed by a hyphen
(“-h”). Unless followed by option parameters, single character flag
options can often be concatenated:

$ ls -l -a -t

$ ls -lat

GNU tools offer alternatively long option names prefixed by two hy-
phens (“--help”). Arguments not starting with hyphens are typically
filenames, hostnames, URLs, etc.

20

The special option “--” signals in many tools that subsequent words
are arguments, not options. This provides one way to access filenames
starting with a hyphen:

$ rm -- -i

$ rm ./-i

The special filename “-” signals often that standard input/output
should be used instead of a file.

All these are conventions that most – but not all – tools implement
(usually via the getopt library function), so check the respective man-
ual first.

The shell remains ignorant of these “-” conventions!

21

Shell command-line preprocessing

A number of punctuation characters in a command line are part of the
shell control syntax

| & ; () < >

or can trigger special convenience substitutions before argv is handed
over to the called program:

→ brace expansion: {,}

→ tilde expansion: ~

→ parameter expansion: $

→ pathname expansion / filename matching: * ? []

→ quote removal: \ ' "

22

Brace expansion

Provides for convenient entry of words with repeated substrings:

$ echo a{b,c,d}e

abe ace ade

$ echo {mgk25,fapp2,rja14}@cam.ac.uk

mgk25@cam.ac.uk fapp2@cam.ac.uk rja14@cam.ac.uk

$ rm slides.{bak,aux,dvi,log,ps}

Tilde expansion

Provides convenient entry of home directory pathname:

$ echo ~pb ~/Mail/inbox

/home/pb /homes/mgk25/Mail/inbox

The builtin echo command simply outputs argv to stdout and is useful for demonstrating
command-line expansion and for single-line text output in scripts.

23

Parameter and command expansion
Substituted with the values of shell variables

$ OBJFILE=skipjack.o

$ echo ${OBJFILE} ${OBJFILE%.o}.c

skipjack.o skipjack.c

$ echo ${HOME} ${PATH} ${LOGNAME}

/homes/mgk25 /bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin mgk25

or the standard output lines of commands

$ which emacs

/usr/bin/emacs

$ echo $(which emacs)

/usr/bin/emacs

$ ls -l $(which emacs)

-rwxr-xr-x 2 root system 3471896 Mar 16 2001 /usr/bin/emacs

Shorter alternatives: variables without braces and command substitu-
tion with grave accent (`) or, with older fonts, back quote (‘)

$ echo $OBJFILE

skipjack.o

$ echo `which emacs`

/usr/bin/emacs

24

Pathname expansion
Command-line arguments containing ?, *, or [. . .] are interpreted as
regular expression patterns and will be substituted with a list of all
matching filenames.

→ ? stands for an arbitrary single character

→ * stands for an arbitrary sequence of zero or more characters

→ [. . .] stands for one character out of a specified set. Use
“-” to specify range of characters and “^” to complement set.
Certain character classes can be named within [:. . . :].

None of the above will match a dot at the start of a filename, which
is the naming convention for hidden files.

Examples:

.bak [A-Za-z].??? [[:alpha:]]* [^A-Z] .??* files/*/*.o

25

Quote removal
Three quotation mechanisms are available to enter the special charac-
ters in command-line arguments without triggering the corresponding
shell substitution:

→ '...' suppresses all special character meanings

→ "..." suppresses all special character meanings, except for

$ \ `

→ \ suppresses all special character meanings for the immediately
following character

Example:

$ echo '$$$' "* * * $HOME * * *" \$HOME

$$$ * * * /homes/mgk25 * * * $HOME

The bash extension $'...' provides access to the full C string quoting syntax. For example
$'\x1b' is the ASCII ESC character.

26

Exercise 1 Write a shell command line that appends :/usr/X11R6/man

to the end of the environment variable $MANPATH.

Exercise 2 Create a new subdirectory and in it five files with unusual
filenames that someone unfamiliar with the shell will find difficult to remove.
Ask a fellow student to write down for each file the command line that will
remove it.

Exercise 3 Given a large set of daily logfiles with date-dependent names
of the form log.yyyymmdd, write down the shortest possible command line
that concatenates all files from 1 October 1999 to 7 July 2002 into a single
file archive in chronological order.

Exercise 4 Write down the command line that appends the current date
and time (in Universal Time) and the Internet name of the current host to
the logfile for the respective current day (local time), using the above logfile
naming convention.

27

Review – what happened so far

→ Some historic and philosophical background on Unix

→ Inter-process communication facilities

→ Where to find documentation
(man, info, /usr/share/doc, -h/--help, Web)

→ Unix shell: substitutable central user interface, configuration
mechanism, and automation “glue” to connect applications

→ piping, file redirection

→ command-line meta-characters: |&;()<>{}[]~$*?\'"

→ variables

→ pitfalls with unusual filenames

28

Job control

Start command or entire pipe as a background job, without connecting
stdin to terminal:

$ command &

[1] 4739

$./testrun 2>&1 | gzip -9c >results.gz &

[2] 4741

$./testrun1 & ./testrun2 & ./testrun3 &

[3] 5106

[4] 5107

[5] 5108

Shell prints both a job number (identifying all processes in pipe) as
well as process ID of last process in pipe. Shell will list all its jobs with
the jobs command, where a + sign marks the last stopped (default)
job.

29

Foreground job: Stdin connected to terminal, shell prompt delayed
until process exits, keyboard signals delivered to this single job.

Background job: Stdin disconnected (read attempt will suspend job),
next shell prompt appears immediately, keyboard signals not delivered,
shell prints notification when job terminates.

Keyboard signals: (keys can be changed with stty tool)

→ Ctrl-C “intr” (SIGINT=2) by default aborts process

→ Ctrl-\ “quit” (SIGQUIT=3) aborts process with core dump

→ Ctrl-Z “susp” (SIGSTOP=19) suspends process

Another important signal (not available via keyboard):

→ SIGKILL=9 destroys process immediately

30

Job control commands:

→ fg resumes suspended job in foreground

→ bg resumes suspended job in background

→ kill sends signal to job or process

Job control commands accept as arguments

→ process ID

→ % + job number

→ % + command name

Examples:

$ ghostview # press Ctrl-Z

[6]+ Stopped ghostview

$ bg

$ kill %6

31

A few more job control hints

→ kill -9 ... sends SIGKILL to process. Should only be used
as a last resort, if a normal kill (which sends SIGINT) failed,
otherwise program has no chance to clean up resources before
it terminates.

→ The jobs command shows only jobs of the current shell, while
ps and top list entire process table. Options for ps differ
significantly between System V and BSD derivatives, check man
pages.

→ fg %- or just %- runs previously stopped job in foreground,
which allows you to switch between several programs conve-
niently.

32

Shell variables

Serve both as variables (of type string) in shell programming as well
as environment variables for communication with programs.

Set variable to value:

variable=value

Note: No whitespace before or after “=” allowed.

Make variable visible to called programs:

export variable

export variable=value

Modify environment variables for one command only:

variable1=value variable2=value command

“set” shows all shell variables
“printenv” shows all (exported) environment variables.

33

Some important environment variables

→ $HOME — Your home directory, also available as “~”.

→ $LOGNAME — Your login name.

→ $PATH — Colon separated list of directories in which shell looks
for commands (e.g., “/bin:/usr/bin:/usr/X11R6/bin”).
Should never contain “.”, at least not at beginning. Why?

→ $LANG, $LC_* — Your “locale”, the name of a system-wide
configuration file with information about your character set and
language/country conventions (e.g., “en_GB.UTF-8”). $LC_*

sets locale only for one category, e.g. $LC_CTYPE for character
set and $LC_COLLATE for sorting order; $LANG sets default for
everything. “locale -a” lists all available locales.

→ $TZ — Specification of your timezone (mainly for remote users)

→ $OLDPWD — Previous working directory, also available as “~-”.

34

→ $PS1 — The normal command prompt, e.g.

$ PS1='\[\033[7m\]\u@\h:\W \!\$\[\033[m\] '

mgk25@shep:unixtools 12$

→ $PRINTER — The default printer for lpr, lpq and lprm.

→ $TERM — The terminal type (usually xterm or vt100).

→ $PAGER/$EDITOR — The default pager/editor (usually less

and emacs, respectively).

→ $DISPLAY — The X server that X clients shall use.

35

Executable files and scripts

Many files signal their format in the first few “magic” bytes of the file
content (e.g., 0x7f,'E','L','F' signals the System V Executable
and Linkable Format, which is also used by Linux and Solaris).
The “file” tool identifies hundreds of file formats and some parameters based on a database of
these “magic” bytes:

$ file $(which ls)

/bin/ls: ELF 32-bit LSB executable, Intel 80386

The kernel recognizes files starting with the magic bytes “#!” as
“scripts” that are intended for processing by the interpreter named
in the rest of the line, e.g. a bash script starts with

#!/bin/bash

If the kernel does not recognize a command file format, the shell will
interpret each line of it, therefore, the “#!” is optional for shell scripts.

Use “chmod +x file” and “./file”, or “bash file”.

36

Plain-text files

→ File is a sequence of lines (trad. each < 80 characters long).

→ Characters ASCII encoded (or extension: ISO 8859-1 “Latin 1”,
Microsoft’s CP1252, EUC, Unicode UTF-8, etc.)

→ Each line ends with a special “line feed” control character (LF,
Ctrl-J, byte value: 1010 = 0A16).

→ “Horizontal tabulator” (HT, TAB, Ctrl-I, byte value: 9) advances
the position of the next character to the next multiple-of-8 column.

Some systems (e.g., DOS, Windows, some Internet protocols) end each
line instead with a two control-character sequence: “carriage return” (CR,
Ctrl-M, 1310 = 0D16) plus “line feed”.

Different end-of-line conventions and different ASCII extensions make con-
version of plain-text files necessary (dos2unix, iconv). Very annoying!
Alternative “flowed” plain-text format: no LF is stored inside a paragraph, line wrapping of
paragraph happens only while a file is being displayed, LF terminates paragraph.

Some plain-text editors (e.g., Windows Notepad) start each UTF-8 plain-text file with a Unicode
“Byte Order Mark” (BOM, U+FEFF, EF16 BB16 BF16), which is not normally used under Unix.

37

Shell compound commands
A list is a sequence of one or more pipelines separated by “;”, “&”,
“&&” or “||”, and optionally terminated by one of “;”, “&” or end-of-
line. The return value of a list is that of the last command executed.

→ (list) executes list in a subshell

→ { list ; } groups a list (to override operator priorities)

→ for variable in words ; do list ; done

Expands words like command-line arguments, assigns one at a
time to the variable, and executes list for each. Example:

for f in *.txt ; do cp $f $f.bak ; done

→ if list ; then list ; elif list ; then list ; else list ; fi

→ while list ; do list ; done

until list ; do list ; done

38

→ case word in

pattern|pattern|. . .) list ;;

. . .
esac

Matches expanded word against each pattern in turn (same
matching rules as pathname expansion) and executes the cor-
responding list when first match is found. Example:

case "$command" in

start)

app_server &

processid=$! ;;

stop)

kill $processid ;;

*)

echo 'unknown command' ;;

esac

39

The first list in the if, while and until commands is interpreted as
a Boolean condition. The true and false commands return 0 and 1
respectively (note the inverse logic compared to Boolean values in C!).

The builtin command “test expr”, which can also be written as
“[expr]” evaluates simple Boolean expressions on files, such as

-e file is true if file exists.
-d file is true if file exists and is a directory.
-f file is true if file exists and is a normal file.
-r file is true if file exists and is readable.
-w file is true if file exists and is writable.
-x file is true if file exists and is executable.

or strings, such as

string1 == string2 string1 < string2
string1 != string2 string1 > string2

40

Examples:

if [-e $HOME/.rhosts] ; then

echo 'Found ~/.rhosts!' | \

mail $LOGNAME -s 'Hacker backdoor?'

fi

Note: A backslash at the end of a command line causes end-of-line to be ignored.

if ["`hostname`" == python.cl.cam.ac.uk] ; then

(sleep 10 ; play ~/sounds/greeting.wav) &

else

xmessage 'Good Morning, Dave!' &

fi

["`arch`" != ix86] || { clear ; echo "I'm a PC" ; }

41

Aliases and functions

Aliases allow a string to be substituted for the first word of a command:

$ alias dir='ls -la'

$ dir

Shell functions are defined with “name () { list ; }”. In the function
body, the command-line arguments are available as $1, $2, $3, etc.
The variable $* contains all arguments and $# their number.

$ unalias dir

$ dir () { ls -la $* ; }

Outside the body of a function definition, the variables $*, $#, $1, $2,
$3, . . . can be used to access the command-line arguments passed to
a shell script.

42

Shell history
The shell records commands entered. These can be accessed in various
ways to save keystrokes:

→ “history” outputs all recently entered commands.

→ “!n” is substituted by the n-th history entry.

→ “!!” and “!-1” are equivalent to the previous command.

→ “!*” is the previous command line minus the first word.

→ Use cursor up/down keys to access history list, modify a previ-
ous command and reissue it by pressing Return.

→ Type Ctrl-O instead of Return to issue command from history
and edit its successor, which allows convenient repetition of
entire command sequences.

→ Type Ctrl-R to search string in history.

Most others probably only useful for teletype writers without cursor.
43

Readline
Interactive bash reads commands via the readline line-editor library.
Many Emacs-like control key sequences are supported, such as:

→ Ctrl-A/Ctrl-E moves cursor to start/end of line

→ Ctrl-K deletes (kills) the rest of the line

→ Ctrl-D deletes the character under the cursor

→ Ctrl-W deletes a word (first letter to cursor)

→ Ctrl-Y inserts deleted strings

→ ESC ˆ performs history expansion on current line

→ ESC # turns current line into a comment

Automatic word completion: Type the “Tab” key, and bash will
complete the word you started when it is an existing $variable, ˜user,
hostname, command or filename, depending on the context. If there
is an ambiguity, pressing “Tab” a second time will show list of choices.

44

Startup files for terminal access
When you log in via a terminal line or telnet/rlogin/ssh:

→ After verifying your password, the login command checks
/etc/passwd to find out what shell to start for you.

→ As a login shell, bash will execute the scripts

/etc/profile

~/.profile

The second one is where you can define your own environment.
Use it to set exported variable values and trigger any activity
that you want to happen at each login.

→ Any subsequently started bash will read ~/.bashrc instead,
which is where you can define functions and aliases, which –
unlike environment variables – are not exported to subshells.

45

Startup files for X Window System access

The “X server” provides access to display, keyboard and mouse for “X
client” applications via the “X11 protocol”.

Before login, the only client is the X Display Manager (xdm).

After login, xdm will start the script /usr/lib/X11/xdm/Xsession.
That invokes the “X clients” (xterm, etc.) that run on your desktop
by default. If ~/.xsession exists, this script will be called instead.

Most X clients in Xsession or ~/.xsession are started in back-
ground, except for the last one, which is usually a window manager
(twm, fvwm2, KDE, etc.). When this last client terminates, and with
it the Xsession script, then xdm will reset the X server. This will
terminate all X clients and the user is logged out.

You can configure your login screen in ~/.xsession. You can also
configure default parameters for many X clients via the xrdb command.
See “man X” for details.

46

Typical .xsession file
#!/bin/bash

. ~/.profile

set X defaults and keymaps

userresources=~/.Xdefaults

usermodmap=~/.Xmodmap

if [-f $userresources]; then

xrdb $userresources

fi

if [-f $usermodmap]; then

xmodmap $usermodmap

fi

start some X clients as background processes

xterm -geometry 80x10+10+5 -C -title "`hostname -s` console" \

-bg lightgreen &

xclock -geometry 80x80+0-0 -update 1 &

xload -geometry 80x80+90-0 -nolabel &

start window manager as foreground process

if [-x /usr/bin/X11/fvwm2] ; then

/usr/bin/X11/fvwm2

else

twm

fi

47

Exercise 5 Configure your PWF-Linux account, such that each time you
log in, an email gets sent automatically to your Hermes mailbox. It should
contain in the subject line the name of the machine on which the reported
login took place, as well as the time of day. In the message body, you should
add a greeting followed by the output of the “w” command that shows who
else is currently using this machine.

Exercise 6 Explain what happens if the command “rm *” is executed in
a subdirectory that contains a file named “-i”.

Exercise 7 Write a shell script “start_terminal” that starts a new
“xterm” process and appends its process ID to the file ~/.terminal.pids.
If the environment variable $TERMINAL has a value, then its content shall
name the command to be started instead of “xterm”.

Exercise 8 Write a further shell script “kill_terminals” that sends a
SIGINT signal to all the processes listed in the file generated in the previous
exercise (if it exists) and removes it afterwards.

48

Review – what happened so far

→ Job control signals and commands suspend, resume, kill, and
connect jobs to or disconnect them from terminal

→ environment variables are an alternative to command line ar-
guments to supply parameters to applications

→ shell scripts, aliases and functions can define new Unix com-
mands

→ compound commands for, if, while, case and tests

→ editing history

→ personalizing the Unix working environment in start-up scripts

49

sed – a stream editor
Designed to modify files in one pass and particularly suited for doing
automated on-the-fly edits of text in pipes. sed scripts can be provided
on the command line

sed [-e] 'command' files

or in a separate file

sed -f scriptfile files

General form of a sed command:

[address[,address]][!]command[arguments]

Addresses can be line numbers or regular expressions. Last line is “$”.
One address selects a line, two addresses a line range (specifying start
and end line). All commands are applied in sequence to each line.
After this, the line is printed, unless option -n is used, in which case
only the p command will print a line. The ! negates address match.
{. . . } can group commands per address.

50

Regular expressions enclosed in /. . . /. Some regular expression meta
characters:

→ “.” matches any character (except new-line)

→ “*” matches the preceding item zero or more times

→ “+” matches the preceding item one or more times

→ “?” matches the preceding item optionally (0–1 times)

→ “^” matches start of line

→ “$” matches end of line

→ “[. . .]” matches one of listed characters
(use in character list “^” to negate and “-” for ranges)

→ “\(. . . \)” grouping, “\{n,m\}” match n, . . . ,m times

→ “\” escape following meta character

51

Some sed examples

Substitute all occurrences of “Windows” with “Linux” (command: s
= substitute, option: g = “global” = all occurrences in line):

sed 's/Windows/Linux/g'

Delete all lines that do not end with “OK” (command: d = delete):

sed '/OK$/!d'

Print only lines between those starting with BEGIN and END, inclusive:

sed -n '/^BEGIN/,/^END/p'

Substitute in lines 40–60 the first word starting with a capital letter
with “X”:

sed '40,60s/[A-Z][a-zA-Z]*/X/'

52

grep, head, tail, sort

→ Print only lines that contain pattern:

grep pattern files

Option -v negates match and -i makes match case insensitive.

→ Print the first and the last 25 lines of a file:

head -n 25 file

tail -n 25 file

tail -f outputs growing file.

→ Print the lines of a text file in alphabetical order: sort file

Options: -k select column, -n sort numbers, -u eliminate du-
plicate lines, -r reverse order.

53

chmod – set file permissions

→ Unix file permissions: 3× 3 + 2 + 1 = 12 bit information.

→ Read/write/execute right for user/group/other.

→ + set-user-id and set-group-id (elevated execution rights)

→ + “sticky bit” (only owner can delete file from directory)

→ chmod ugoa[+-=]rwxst files

Examples: Make file unreadable for anyone but the user/owner.

$ ls -l message.txt

-rw-r--r-- 1 mgk25 private 1527 Oct 8 01:05 message.txt

$ chmod go-rwx message.txt

$ ls -l message.txt

-rw------- 1 mgk25 private 1527 Oct 8 01:05 message.txt

For directories, “execution” right means right to traverse. Directories
can be made traversable without being readable, such that only those
who know the filenames inside can access them.

54

find – traverse directory trees

find directories expression — recursively traverse the file trees
rooted at the listed directories. Evaluate the Boolean expression for
each file found. Examples:

Print relative pathname of each file below current directory:

$ find . -print

Erase each file named “core” below home directory if it was not mod-
ified in the last 10 days:

$ find ~ -name core -mtime +10 -exec rm -i {} \;

The test “-mtime +10” is true for files older than 10 days, concate-
nation of tests means “logical and”, so “-exec” will only be executed
if all earlier terms were true. The “{}” is substituted with the cur-
rent filename, and “\;” terminates the list of arguments of the shell
command provided to “-exec”.

55

Some networking tools

→ wget url — Fetch a file over the Internet via HTTP or FTP.
Option “-r” fetches HTML files recursively, option “-l” limits recursion depth.

→ ssh [user @]hostname [command] — Log in via compres-
sed and encrypted link to remote machine. If “command ” is
provided, execute it in remote shell, otherwise go interactive.
Preserves stdout/stderr distinction. Can also forward X11 requests (option “-X”) or
arbitrary TCP/IP ports (options “-L” and “-R”) over secure link.

→ ssh-keygen -t dsa — Generate DSA public/private key pair
for password-free ssh authentication in “~/.ssh/id_dsa.pub”
and “~/.ssh/id_dsa”. Protect “id_dsa” like a password!

Remote machine will not ask for password with ssh, if your pri-
vate key “~/.ssh/id_dsa” fits one of the public keys (“locks”)
listed on the remote machine in “~/.ssh/authorized_keys”.
On PWF Linux, your Novell-server home directory with ~/.ssh/authorized_keys is
mounted only after login, and therefore no password-free login for first session.

56

rsync [options] source destination — An improved cp.

→ The source and/or destination file/directory names can be pre-
fixed with [user @]hostname : if they are on a remote host.

→ Uses ssh as a secure transport channel (may require -e ssh).

→ Options to copy recursively entire subtrees (-r), preserve sym-
bolic links (-l), permission bits (-p), and timestamps (-t).

→ Will not transfer files (or parts of files) that are already present
at the destination. An efficient algorithm determines, which
bytes actually need to be transmitted only ⇒ very useful to
keep huge file trees synchronised over slow links.

Application example: Very careful backup

rsync -e ssh -v -rlpt --delete --backup \

--backup-dir OLD/`date -Im` \

me@myhost.org:. mycopy/
Removes files at the destination that are no longer at the source, but keeps a timestamped copy
of each changed or removed file in mycopy/OLD/yyyy-mm-dd... /, so nothing gets ever lost.

57

tar, gzip – packaging and compressing

→ tar — Convert between a file tree and a byte stream (“tape
archiver”).

Create archive (recurses into subdirectories):

$ tar cvf archive.tar files

Show archive content:

$ tar tvf archive.tar

Extract archive:

$ tar xvf archive.tar [files]

58

→ gzip file — convert “file ” into a compressed “file.gz”
(using a Lempel-Ziv/Huffman algorithm).

→ gunzip file — decompress “*.gz” files.

→ [un]compress file — [de]compress “*.Z” files (older tool
using less efficient and patented LZW algorithm).

→ b[un]zip2 file — [de]compress “*.bz2” files (newer tool
using Burrows-Wheeler blocktransform).

→ zcat [file] — decompress *.Z/*.gz to stdout for use in
pipes.

→ Extract compressed tar archive

$ zcat archive.tar.gz | tar xvf -

$ tar xvzf archive.tgz # GNU tar only!

59

diff, patch – managing file differences

→ diff oldfile newfile — Show differences between two
text files as lines that have to be inserted/deleted to change
“oldfile ” into “newfile ”. Option “-u” gives better read-
able “unified” format with context lines. Option “-r” compares
entire directory trees.

→ patch <diff-file — Apply the changes listed in the pro-
vided diff output file to the old files named in it. The diff file
should contain relative pathnames. If not, use option “-pn”
to remove the first n slashes and preceding characters from
pathnames in “diff-file ”.

If the old files found by patch do not match exactly the removed lines
in a “-u” diff output, patch will search whether the context lines can
be located nearby and will report which line offset was necessary.

Use diff3 to compare three files and merge the edits from different
revision branches.

60

RCS – Revision Control System
Operates on individual files only. For every working file “example”,
RCS keeps a revision history database file named “example,v” or (if
the RCS/ subdirectory exists) “RCS/example,v”.

→ ci example — Move a file (back) into the “example,v”
repository as the new latest revision (“check in”).

→ ci -u example — Keep a read-only unlocked copy as well.
This is equivalent to “ci . . . ” followed by “co . . . ”.

→ ci -l example — Keep a writable locked copy (only one user
can have the lock for a file at a time). This is equivalent to
“ci . . . ” followed by “co -l . . . ”.

→ co example — Fetches the latest revision from “example,v”
as a read-only file (“check out”). Use option “-rn.m” to re-
trieve earlier revisions. There must not be a writable working
file already.

61

→ co -l example — Fetches the latest revision as a locked
writable file if the lock is available.

→ rcsdiff example — Show differences between working file
and latest version in repository (use option “-rn.m” to com-
pare older revisions). Normal diff options like -u can be ap-
plied.

→ rlog example — Show who made changes when on this file
and left what change comments.

In a team, keep all the “*,v” files in a shared repository directory
writable for everyone. Team members have their own respective work-
ing directory with a symbolic link named RCS to the shared directory.

As long as nobody touches the “*,v” files or manually changes the
write permissions on working files, only one team member at a time
can edit a file and old versions are never lost. The rcs command can
be used by a team leader to bypass this policy and break locks or delete
old revisions. If you have subdirectories or hate locks, use svn instead.

62

svn – Subversion

Subversion is a recent (2001) popular version control system.

Main differences to RCS:

→ Uses a copy-modify-merge approach (RCS: lock-modify-unlock).
This allows team members to edit the same files concurrently.

• Concurrent edits in different lines
=⇒ merged automatically

• Concurrent edits in the same lines
=⇒ requires manual resolving of collisions

→ Manages entire directory trees, not just single files

→ Supports several remote-access protocols (WebDAV, ssh, etc.)

63

svn – Repository and working directories

Working directory

of user 1

Working directory

of user 2

Working directory

of user 3

repository

svn commit

svn update svn commit

svn checkout

svn checkout

svn checkout

svn update

Subversion

URL: file:///homes/mgk25/SVN/

svnadmin create

svn update svn commit

Team administrator first creates repository: svnadmin create

Team members create personal working directories: svn checkout

Team members repeatedly fetch latest version: svn update

and return their changes: svn commit
64

svn – Subversion vs CVS
Subversion was specifically written to replace an older system, CVS,
which in turn started out as a layer on top of RCS for managing entire
directory trees. Its command-line interface closely follows that of CVS,
but improves and simplifies the latter in many ways. In particular,
Subversion

→ understands renaming, moving, copying and replacing of both
files and entire directory trees, no per-file version numbers

→ understands symbolic links

→ performs atomic commits

→ versioned metadata (MIME types, EOL semantics, etc.)

→ is easy to learn and understand for current CVS users

→ simpler branching and tagging (through efficient copying)

→ more efficient transactions, more disconnected operations

→ wider choice of remote-access protocols (WebDAV, ssh, etc.)
Old CVS repositories can easily be converted: http://cvs2svn.tigris.org/

65

svn – Basic operations

First, create a new repository, e.g. under ~/SVN/:

svnadmin create ~/SVN --fs-type=fsfs

Subversion now supports two database formats, bdb (default) and fsfs. Only the newer fsfs

works reliably over networked file systems, therefore use the --fs-type=fsfs option when creating
a Subversion repository in a PWF Linux home directory.

If you have some existing (unversioned) files in ~/projects/demo/*

that you want to add as proj1/* to your repository:

svn import ~/projects/demo file://${HOME}/SVN/proj1

The import operation does not touch the files under ~/projects/demo; it merely copies them into
the versioning database. In particular, this command does not yet turn ~/projects/demo into
an svn working directory. You may want to remove your original subdirectory ~/projects/demo

after the following check out, to avoid confusion with your new working directory.

66

To check out a working copy of repository subdirectory proj1/ into a
new working directory ~/myfiles/proj1 use:

svn checkout file://${HOME}/SVN/proj1 ~/myfiles/proj1

Note that every subdirectory in your new working directory has a .svn

subdirectory. This contains, among other things, the URL of your
repository. Therefore, inside the working directory, it is no longer nec-
essary to add that repository URL as an argument to svn operations.

The most common svn operations:

→ svn add filenames — Put new files under version control

→ svn delete filenames — Delete files

→ svn copy source destination — Copy files

→ svn move source destination — Move files

The above four operations will not transfer the requested changes to the repository before the next
commit, however the delete/copy/move operations perform the requested action immediately on
your working files.

Remember not to use rm/cp/mv on working files that are under Subversion control, otherwise
these operations will not be reflected in the repository after your next commit.

67

→ svn status – List all files that differ between your working
directory and the repository. The status code shown indicates:

• A=added: this file will appear in the repository

• D=deleted: this file will disappear from the repository

• M=modified: you have edited this file

• R=replaced: you used svn delete followed by svn add

• C=conflict: at the last update, there was a conflict be-
tween your local changes and independent changes in the
repository, which you still need to resolve manually

• ?=unversioned: file is not in repository (suppress: -q)

• !=missing: file in repository, but not in working dir.

→ svn diff [filenames] —
Show what you changed so far compared to the “base” version
that you got at your last checkout or update.

68

→ svn commit [filenames] — Check into the repository any
modifications, additions, removals of files that you did since
your last checkout or commit.
Option -m '...' provides a commit log message; without it, svn commit will call
$EDITOR for you to enter one.

→ svn update [filenames] — Apply modifications that oth-
ers committed since you last updated your working directory.

This will list in the first column a letter for any file that differed
between your working directory and the repository. Apart from
the letter codes used by status, it also may indicate

• U=updated: get newer version of this file from repository

• G=merged: conflict, but was automatically resolved

Remaining conflicts (indicated as C) must be merged manually.
To assist in manual merging of conflicts, the update operation will write out all three
file versions involved, all identified with appropriate filename extensions, as well as a
diff3-style file that shows the differing lines next to each other for convenient editing.

69

→ svn resolved filenames — Tell Subversion you have re-
solved a conflict. (Also cleans up the three additional files.)

→ svn revert filenames — Undo local edits and go back to
the version you had at your last checkout, commit, or update.

→ svn ls [filenames] — List repository directory entries

→ svn cat filenames — Show file contents from repository

Some of these commands can also be applied directly to a repository,
without needing a working directory. In this case, specify a repository
URL instead of a filename:

svn copy file://${HOME}/SVN/proj1 \

file://${HOME}/SVN/proj1-release-1.0

An svn copy increases the repository size by only a trivial amount,
independent of how much data was copied. Therefore, to give a par-
ticular version a symbolic name, simply svn copy it in the repository
into a new subdirectory of that name.

70

Working example:
$ mkdir example

$ echo 'hello world' >example/file1

$ svnadmin create $HOME/svn-repos --fs-type=fsfs

$ svn import example file://$HOME/svn-repos/example -m 'V1'

Adding example/file1

Committed revision 1.

$ svn list file://$HOME/svn-repos/

example/

$ svn list file://$HOME/svn-repos/example -v

1 mgk25 12 Oct 17 21:07 file1

$ svn cat file://$HOME/svn-repos/example/file1

hello world

$ rm -r example

$ svn checkout file://$HOME/svn-repos/example ex1

A ex1/file1

Checked out revision 1.

71

$ svn checkout file://$HOME/svn-repos/example ex2

A ex2/file1

Checked out revision 1.

$ echo "hello humans" >ex1/file1

$ (cd ex1 ; svn copy file1 file2)

A file2

$ (cd ex1 ; svn commit -m 'world -> humans')

Sending file1

Adding file2

Transmitting file data ..

Committed revision 2.

$ echo "hello dogs" >ex2/file1

$ (cd ex1 ; svn status)

$ (cd ex2 ; svn status)

M file1

$ (cd ex2 ; svn commit -m 'world -> dogs')

Sending file1

svn: Commit failed (details follow):

svn: Out of date: '/example/file1' in transaction '2-1'

72

$ (cd ex2 ; svn update)

C file1

A file2

Updated to revision 2.

$ cat ex2/file1

<<<<<<< .mine

hello dogs

=======

hello humans

>>>>>>> .r2

$ (cd ex2 ; svn status)

? file1.r1

? file1.r2

? file1.mine

C file1

$ echo "hello humans and dogs" >ex2/file1

$ svn resolved ex2/file1

$ (cd ex2 ; svn status)

M file1

73

$ (cd ex2 ; svn commit -m 'k9 extension')

Sending file1

Transmitting file data .

Committed revision 3.

$ (cd ex1 ; svn status)

$ (cd ex1 ; svn update)

U file1

Updated to revision 3.

$ cat ex?/file1

hello humans and dogs

hello humans and dogs

$ rm -rf ex{1,2} $HOME/svn-repos

Full documentation:
http://svnbook.red-bean.com/

http://subversion.tigris.org/

Microsoft Windows Subversion GUI: TortoiseSVN
http://tortoisesvn.tigris.org/

74

Remote access:
The URL to an svn repository can point to a

→ local file — file://

→ Subversion/WebDAV Apache server — http:// or https://

→ Subversion server — svn://

→ Subversion server accessed via ssh tunnel — svn+ssh://

The command

svn list svn+ssh://mgk25@linux2/home/mgk25/SVN/proj1

will ssh, as user mgk25, into host linux2 and will start a server there
with svnserve -t.
If you give others full shell access to your account to start svnserve -t, they could abuse this.
Fortunately, ssh allows you to give others access to only a single program running under your
user identity. You can add their public key to your ~/.ssh/authorized_keys file with the option
command="..." and other suitable restrictions (see man sshd and the svn book for details):

command="svnserve -t --tunnel-user=john -r /home/mgk25/SVN",no-port-forwarding,

no-agent-forwarding,no-X11-forwarding,no-pty ssh-dss AAAB3...ogUc= john@bla.com

75

cc/gcc – the C compiler
Example:

$ cat hello.c

#include <stdio.h>

int main() { printf("Hello, World!\n"); return 0; }

$ gcc -o hello hello.c

$./hello

Hello, World!

Compiler accepts source (“*.c”) and object (“*.o”) files. Produces
either final executable or object file (option “-c”). Common options:

→ -W -Wall — activate warning messages (better analysis for
suspicious code)

→ -O — activate code optimizer

→ -g — include debugging information (symbols, line numbers).

76

gdb – the C debugger

Best use on binaries compiled with “-g”.

→ gdb binary — run command inside debugger (“r”) after set-
ting breakpoints.

→ gdb binary core — post mortem analysis on memory image
of terminated process.

Enter in shell “ulimit -c 100000” before test run to enable core
dumps. Core dump can be triggered by:

→ a user pressing Ctrl-\ (SIGQUIT)

→ a fatal processor or memory exception (segmentation violation,
division by zero, etc.)

77

Some common gdb commands:

→ bt — print the current stack (backtracing function calls)

→ p expression — print variable and expression values

→ up/down — move between stack frames to inspect variables at
different function call levels

→ b . . . — set breakpoint at specified line or function

→ r . . . — run program with specified command-line arguments

→ s — continue until next source code line (skip function calls)

→ n — continue until next source code line (follow function calls)

Also consider starting gdb within emacs with “ESC x gdb”, which
causes the program-counter position to be indicated in source-file win-
dows.

78

make – a project build tool
The files generated in a project fall into two categories:

→ Source files: Files that cannot be regenerated easily, such as

• working files directly created and edited by humans

• files provided by outsiders

• results of experiments

→ Derived files: Files that can be recreated easily by merely
executing a few shell commands, such as

• object and executable code output from a compiler

• output of document formatting tools

• output of file-format conversion tools

• results of post-processing steps for experimental data

• source code generated by other programs

• files downloaded from Internet archives

79

Many derived files have other source or derived files as prerequisites.
They were generated from these input files and have to be regenerated
as soon as one of the prerequisites has changed, and make does this.

A Makefile describes

→ which (“target”) file in a project is derived

→ on which other files that target depends as a prerequisite

→ which shell command sequence will regenerate it

A Makefile contains rules of the form

target1 target2 ... : prereq1 prereq2 ...

command1

command2

...

Command lines must start with a TAB character (ASCII 9).

80

Examples:

demo: demo.c demo.h

gcc -g -O -o demo demo.c

data.gz: demo

./demo | gzip -c > data.gz

Call make with a list of target files as command-line arguments. It will
check for every requested target whether it is still up-to-date and will
regenerate it if not:

→ It first checks recursively whether all prerequisites of a target
are up to date.

→ It then checks whether the target file exists and is newer than
all its prerequisites.

→ If not, it executes the regeneration commands specified.

Without arguments, make checks the targets of the first rule.
81

Variables can be used to abbreviate rules:

CC=gcc

CFLAGS=-g -O

demo: demo.c demo.h

$(CC) $(CFLAGS) -o $@ $<

data.gz: demo

./$< | gzip -c > $@

→ $@ — file name of the target of the rule

→ $< — name of the first prerequisite

→ $+ — names of all prerequisites

Environment variables automatically become make variables, for exam-
ple $(HOME). A “$” in a shell command has to be entered as “$$”.

82

Implicit rules apply to all files with registered suffixes:

.SUFFIXES: .eps .gif .jpg $(SUFFIXES)

.gif.eps:

giftopnm $< | pnmtops -noturn > $@

.jpg.eps:

djpeg $< | pnmtops -noturn > $@

make knows a number of implicit rules by default, for instance

.c.o:

$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

It is customary to add rules with “phony targets” for routine tasks that
will never produce the target file and just execute the commands:

clean:

rm -f *~ *.bak *.o $(TARGETS) core

Common “phony targets” are “clean”, “test”, “install”.
83

Exercise 9 Write down the command line of the single sed invocation
that performs the same action as the pipe

head -n 12 <input | tail -n 7 | grep 'with'

Exercise 10 Generate a Subversion repository and place all your exercise
solution files created so far into it. Then modify a file, commit the change,
and create a patch file that contains the modification you made. And finally,
retrieve the original version of the modified file again out of the repository.

Exercise 11 Add a Makefile with a target solutions.tar.gz that packs
up all your solutions files into a compressed archive file. Ensure that calling
make solutions.tar.gz will recreate the compressed package only after
you have actually modified one of the files in the package.

Exercise 12 Write a C program that divides a variable by zero and execute
it. Use gdb to determine from the resulting core file the line number in
which the division occurred and the value of the variable involved.

84

perl – the Swiss Army Unix Tool
→ a portable interpreted language with comprehensive library

→ combines some of the features of C, sed, awk and the shell

→ the expression and compound-statement syntax follows closely
C, as do many standard library functions

→ powerful regular expression and binary data conversion facili-
ties make it well suited for parsing and converting file formats,
extracting data, and formatting human-readable output

→ offers arbitrary size strings, arrays and hash tables

→ garbage collecting memory management

→ dense and compact syntax leads to many potential pitfalls and
has given Perl the reputation of a write-only hacker language

→ widely believed to be less suited for beginners, numerical com-
putation and large-scale software engineering, but highly pop-
ular for small to medium sized scripts, and Web CGI

85

perl – data types
Perl has three variable types, each with its own name space. The first
character of each variable reference indicates the type accessed:

$... a scalar
@... an array of scalars
%... an associative array of scalars (hash table)

[...] selects an array element, {...} queries a hash table entry.

Examples of variable references:

$days = the value of the scalar variable “days”
$days[28] = element 29 of the array @days

$days{'Feb'} = the ’Feb’ value from the hash table %days
$#days = last index of array @days

@days = ($days[0], . . . , $days[$#days])

@days[3,4,5] = @days[3..5]

@days{'a','c'} = ($days{'a'}, $days{'c'})

%days = (key1, val1, key2, val2, . . .)

86

perl – scalar values

→ A “scalar” variable can hold a string, number, or reference.

→ Scalar variables can also hold the special undef value
(set with undef and tested with defined(...))

→ Strings can consist of bytes or characters (Unicode/UTF-8).
More on Unicode character strings: man perluniintro.

→ Numeric (decimal) and string values are automatically con-
verted into each other as needed by operators.
(5 - '3' == 2, 'a' == 0)

→ In a Boolean context, the values '', 0, '0', or undef are
interpreted as “false”, everything else as “true”.
Boolean operators return 0 or 1.

→ References are typed pointers with reference counting.

87

perl – scalar literals
→ Numeric constants follow the C format:

123 (decimal), 0173 (octal), 0x7b (hex), 3.14e9 (float)
Underscores can be added for legibility: 4_294_967_295

→ String constants enclosed with "..." will substitute variable
references and other meta characters. In '...' only “\'” and
“\\” are substituted.

$header = "From: $name[$i]\@$host\n" .

"Subject: $subject{$msgid}\n";

print 'Metacharacters include: $@%\\';

→ Strings can contain line feeds (multiple source-code lines).

→ Multiline strings can also be entered with “here docs”:

$header = <<"EOT";

From: $name[$i]\@$host

Subject: $subject{$msgid}

EOT

88

perl – arrays
→ Arrays start at index 0

→ Index of last element of @foo is $#foo (= length minus 1)

→ Array variables evaluate in a scalar context to array length, i.e.

scalar(@foo) == $#foo + 1;

→ List values are constructed by joining scalar values with comma
operator (parenthesis often needed due to precedence rules):

@foo = (3.1, 'h', $last);

→ Lists in lists lose their list identity: (1,(2,3)) equals (1,2,3)

→ Use [...] to generate reference to list (e.g., for nested lists).

→ Null list: ()

→ List assignments: ($a,undef,$b,@c)=(1,2,3,4,5); equals
$a=1; $b=3; @c=(4,5);

→ Command line arguments are available in @ARGV.

89

perl – hash tables

→ Literal of a hash table is a list of key/value pairs:

%age = ('adam', 19, 'bob', 22, 'charlie', 7);

Using => instead of comma between key and value increases readability:

%age = ('adam' => 19, 'bob' => 22, 'charlie' => 7);

→ Access to hash table %age:

$age{'john'} = $age{'adam'} + 6;

→ Remove entry: delete $age{'charlie'};

→ Get list of all keys: @family = keys %age;

→ Use {...} to generate reference to hash table.

→ Environment variables are available in %ENV.

For more information: man perldata

90

perl – syntax
→ Comments start with # and go to end of line (as in shell)

→ Compound statements:

if (expr) block

elsif (expr) block ...

else block

while (expr) block [continue block]

for (expr ; expr ; expr) block

foreach var (list) block

Each block must be surrounded by {...} (no unbraced single statements as in C).
The optional continue block is executed just before expr is evaluated again.

→ The compound statements if, unless, while, and until can
be appended to a statement:

$n = 0 if ++$n > 9;

do { $x >>= 1; } until $x < 64;

A do block is executed at least once.

91

→ Loop control:

• last immediately exits a loop.

• next executes the continue block of a loop, then jumps
back to the top to test the expression.

• redo restarts a loop block (without executing the continue
block or evaluating the expression).

→ The loop statements while, for, or foreach can be preceded
by a label for reference in next, last, or redo instructions:

LINE: while (<STDIN>) {

next LINE if /^#/; # discard comments

...

}

→ No need to declare global variables.

For more information: man perlsyn

92

perl – subroutines

→ Subroutine declaration:

sub name block

→ Subroutine call:

name (list);

name list ;

&name ;

A & prefix clarifies that a name identifies a subroutine. This is usually redundant thanks
to a prior sub declaration or parenthesis. The third case passes @_ on as parameters.

→ Parameters are passed as a flat list of scalars in the array @_.

→ Perl subroutines are call-by-reference, that is $_[0], . . . are
aliases for the actual parameters. Assignments to @_ elements
will raise errors unless the corresponding parameters are lvalues.

93

→ Subroutines return the value of the last expression evaluated or
the argument of a return statement. It will be evaluated in
the scalar/list context in which the subroutine was called.

→ Use my($a,$b); to declare local variables $a and $b within a
block.

Example:

sub max {

my ($x, $y) = @_;

return $x if $x > $y;

$y;

}

$m = max(5, 7);

print "max = $m\n";

For more information: man perlsub

94

perl – operators

→ Normal C/Java operators:

++ -- + - * / % << >> ! & | ^ && ||

?: , = += -= *= ...

→ Exponentiation: **

→ Numeric comparison: == != <=> < > <= >=

→ String comparison: eq ne cmp lt gt le ge

→ String concatenation: $a . $a . $a eq $a x 3

→ Apply regular expression operation to variable:
$line =~ s/sed/perl/g;

→ `...` executes a shell command

→ .. returns list with a number range in a list context and works
as a flip-flop in a scalar context (for sed-style line ranges)

For more information: man perlop

95

perl – references
Scalar variables can carry references to other scalar, list, hash-table, or
subroutine values.

→ To create a reference to another variable, subroutine or value,
prefix it with \. (Much like & in C.)

→ To dereference such a reference, prefix it with $, @, %, or &,
according to the resulting type. Use {. . . } around the reference
to clarify operator precedence ($$a is short for ${$a}).

→ Hash-table and list references used in a lookup can also be
dereferenced with ->, therefore $a->{'john'} is short for
${$a}{'john'} and $b->[5] is short for ${$b}[5].

→ References to anonymous arrays can be created with [. . .].

→ References to anonymous hash tables can be created with {. . . }.

For more information: man perlref

96

perl – examples of standard functions

split /pattern /, expr

Splits string into array of strings, separated by pattern.

join expr, list

Joins the strings in list into a single string, separated by value
of expr .

reverse list

Reverse the order of elements in a list.
Can also be used to invert hash tables.

substr expr, offset [, len]

Extract substring.

Example:

$line = 'mgk25:x:1597:1597:Markus Kuhn:/homes/mgk25:/usr/bin/bash';

@user = split(/:/, $line);

($logname, $pw, $uid, $gid, $name, $home, $shell) = @user;

$line = join(':', reverse(@user));

97

perl – more standard functions

chop, chomp
Remove trailing character/linefeed
from string

pack, unpack
build/parse binary records

sprintf
format strings and numbers

shift, unshift, push, pop
add/remove first/last array element

die, warn
abort program with error/warning

map, grep
Iterate over or filter list elements

lc, uc, lcfirst, ucfirst
Change entire string or first
character to lowercase/uppercase

chr, ord
ASCII ↔ integer conversion

hex, oct
string → number conversion

wantarray
check scalar/list context in
subroutine call

require, use
Import library module

Perl provides most standard C and POSIX functions and system calls for

arithmetic and low-level access to files, network sockets, and other inter-

process communication facilities.
All built-in functions are listed in man perlfunc. A comprehensive set of add-on library modules
is listed in man perlmodlib and thousands more are on http://www.cpan.org/.

98

perl – regular expressions
→ Perl’s regular expression syntax is similar to sed’s, but (){}

are metacharacters (and need no backslashes).

→ Substrings matched by regular expression inside (...) are as-
signed to variables $1, $2, $3, . . . and can be used in the
replacement string of a s/.../.../ expression.

→ The substring matched by the regex pattern is assigned to $&,
the unmatched prefix and suffix go into $` and $'.

→ Predefined character classes include whitespace (\s), digits
(\d), alphanumeric or _ character (\w). The respective comple-
ment classes are defined by the corresponding uppercase letters,
e.g. \S for non-whitespace characters.

Example:

$line = 'mgk25:x:1597:1597:Markus Kuhn:/homes/mgk25:/usr/bin/bash';

if ($line =~ /^(\w+):[^:]*:\d+:\d+:([^:]*):[^:]*:[^:]*$/) {

$logname = $1; $name = $2;

print "'$logname' = '$name'\n";

} else { die("Syntax error in '$line'\n"); }

For more information: man perlre

99

perl – predefined variables

$_ The “default variable” for many operations, e.g.

print; = print $_;

tr/a-z/A-Z/; = $_ =~ tr/a-z/A-Z/;

while (<FILE>) ... = while ($_ = <FILE>) ...

$. Line number of the line most recently read from any file

$? Child process return value from the most recently closed pipe
or `...` operator

$! Error message for the most recent system call, equivalent to
C’s strerror(errno). Example:

open(FILE, 'test.dat') ||

die("Can't read 'test.dat': $!\n");

For many more: man perlvar

100

perl – file input/output

→ open filehandle, expr

open(F1, 'test.dat'); # open file 'test.dat' for reading

open(F2, '>test.dat'); # create file 'test.dat' for writing

open(F3, '>>test.dat'); # append to file 'test.dat'

open(F4, 'date|'); # invoke 'date' and connect to its stdout

open(F5, '|mail -s test'); # invoke 'mail' and connect to its stdin

→ print filehandle, list

→ close, eof, getc, seek, read, format, write, truncate

→ “<filehandle >” reads another line from file handle FILE and
returns the string. Used without assignment in a while loop,
the line read will be assigned to $_.

→ “<>” opens one file after another listed on the command line
(or stdin if none given) and reads out one line each time.

101

perl – invocation

→ First line of a Perl script: #!/usr/bin/perl (as with shell)

→ Option “-e” reads code from command line (as with sed)

→ Option “-w” prints warnings about dubious-looking code.

→ Option “-d” activates the Perl debugger (see man perldebug)

→ Option “-p” places the loop

while (<>) { ... print; }

around the script, such that perl reads and prints every line.
This way, Perl can be used much like sed:

sed -e 's/sed/perl/g'

perl -pe 's/sed/perl/g'

102

→ Option -n is like -p without the “print;”.

→ Option “-i[backup-suffix]” adds in-place file modification
to -p. It renames the input file, opens an output file with the
original name and directs the input into it.

Example: To make email addresses in your web pages harder to harvest
for spammers, the lines

perl -pi.bak <<EOT *.html

s/(href=\"mailto:[^@\"]+)@([^@\"]+\")/$1%40$2/ig;

s/([a-zA-Z0-9\.\-\+_]+)@([a-zA-Z0-9\.\-]+)/$1@$2/ig;

EOT

will convert for instance

jdoe@acm.org

into

jdoe@acm.org

For more information: man perlrun

103

perl – a simple example

Generate a list of email addresses of everyone on the Computer Lab’s
“People” web page, sorted by surname.

Example input:

...

<tr><td>asa28</td><td>FE04</td><td>63622</td><td></td><td

></td><td>Abrahams, Alan</td></tr>

<tr><td>mha23</td><td>FE22</td><td>63692</td><td></td><td

></td><td>Allen-Williams, Mair</td></tr>

<tr><td>sa333</td><td>GC33</td><td>63680</td><td></td><td

></td><td>Allott, Stephen</td></tr>

...

Example output:

Alan Abrahams <asa28@cl.cam.ac.uk>

Mair Allen-Williams <mha23@cl.cam.ac.uk>

Stephen Allott <sa333@cl.cam.ac.uk>

104

perl – a simple example

Possible solution:

#!/usr/bin/perl

$url = 'http://www.cl.cam.ac.uk/UoCCL/people/directory.html';

open(HTML, "wget -O - '$url' |") || die("Can't start 'wget': $!\n");

while (<HTML>) {

if (/^<tr><td>.*<\/tr>$/i) {

$crsid = $1;

if (/<td>()?([^<>]*), ([^<>]*)(<\/a>)?<\/td><\/tr>$/i) {

$email{$crsid} = "$3 $2 <$crsid\@cl.cam.ac.uk>";

$surname{$crsid} = $2;

} else { die ("Syntax error:\n$_") }

}

}

foreach $s (sort({$surname{$a} cmp $surname{$b}} keys(%email))) {

print "$email{$s}\n";

}

Warning: This simple-minded solution makes numerous assumptions
about how the web page is formatted, which may or may not be valid.
Can you name examples of what could go wrong?

105

perl – email-header parsing example
Email headers (as defined in RFC 822) have the form:

$header = <<'EOT';

From Ian.Grant@cl.cam.ac.uk 21 Sep 2004 10:10:18 +0100

Received: from ppsw-8.csi.cam.ac.uk ([131.111.8.138])

by mta1.cl.cam.ac.uk with esmtp (Exim 3.092 #1)

id 1V9afA-0004E1-00 for Markus.Kuhn@cl.cam.ac.uk;

Tue, 21 Sep 2004 10:10:16 +0100

Date: Tue, 21 Sep 2004 10:10:05 +0100

To: Markus.Kuhn@cl.cam.ac.uk

Subject: Re: Unix tools notes

Message-ID: <514FGFED.mailVJ3982Y@cl.cam.ac.uk>

EOT

This can be converted into a Perl hash table as easily as

$header =~ s/\n\s+/ /g; # fix continuation lines

%hdr = (FROM => split /^(\S*?):\s*/m, $header);

and accessed as in if ($hdr{Subject} =~ /Unix tools/) . . .
106

LATEX – a document formatter
LATEX is a sophisticated macro package for the TEX text formatting
system. Thanks to its excellent facilities for mathematical typesetting,
it has become the de-facto standard for preparing scientific publications
in mathematical, physical, computing and engineering disciplines.

Graphical illustrations can be added to TEX in the form of “Embedded
PostScript” files, which can be drawn with interactive tools such as
“xfig” or “tgif”.

Processing steps:

f.tex
latex
−→ f.dvi

dvips
−→ f.ps

ps2pdf
−→ f.pdf

g1.eps g2.eps
@@R ��	

Recommended introduction:

Leslie Lamport: LATEX – a document preparation

system. 2nd ed., Addison-Wesley, 1994.
TEX Frequently Asked Questions: http://www.tex.ac.uk/cgi-bin/texfaq2html

For advanced users: Mittelbach, et al.: The LATEX Companion. 2nd ed., Addison-Wesley, 2004.

107

LATEX example
\documentclass[12pt]{article}

\setlength{\textwidth}{75mm}

\begin{document}

\title{\TeX\ -- a summary}

\author{Markus Kuhn}

\date{3 November 2009}

\maketitle

\section{Introduction}

Mathematical formul\ae\ such as

$e^{i\pi} = -1$ or even

\[\Phi(z) = \frac{1}{\sqrt{2\pi}}

\int_0^x e^{-\frac12 x^2} \]

were a real `pain' to typeset until

\textsc{Knuth}'s text formatter \TeX\

became available \cite{Knuth86}.

\begin{thebibliography}{9}

\bibitem{Knuth86}Donald E. Knuth:

The \TeX book. Ad\-dison-Wesley, 1986.

\end{thebibliography}

\end{document}

TEX – a summary

Markus Kuhn

3 November 2009

1 Introduction

Mathematical formulæ such as eiπ = −1
or even

Φ(z) =
1√
2π

∫
x

0

e−
1

2
x
2

were a real ‘pain’ to typeset until Knuth’s
text formatter TEX became available [1].

References

[1] Donald E. Knuth: The TEXbook. Ad-
dison-Wesley, 1986.

108

TEX input syntax

→ TEX reads plain-text *.tex files (e.g., prepared with emacs)

→ no distinction is made between space character and line feed

→ multiple spaces are treated like a single space

→ multiple line feeds (empty lines) are treated as a paragraph
separator (just like the \par command)

→ command, macro and variable names start with a backslash (\),
followed by either a sequence of letters or a single non-letter
character (uppercase/lowercase is significant).

Correct: \par, \item, \pagethree, \LaTeX, \+, \\, \3

Wrong: \page33, \<>

→ space and line-feed characters are ignored if they follow a com-
mand/macro/variable name consisting of letters. Use \ to
add an explicit space (e.g., \TeX\ syntax ⇒ TEX syntax).

109

Characters with special semantics

In *.tex input files, the characters

$ % & ~ _ ^ \ { }

have special functions. Some of these can be included in regular text
by writing

\# \$ \% \& _ \^ \{ \}

LATEX supports typesetting all ASCII characters via the \verb and \url macros.

% starts a comment
All characters between (and including) a % and the next line feed will be ignored. Append % at
the end of a line to avoid interpretation of the subsequent line feed as a space.

[# plus a digit denotes a parameter in macros, ~ is a no-break space,
$ delimits inline equations, & is used as a tabulator mark, \\ is a line
separator, ^ indicates a superscript and _ a subscript in math mode.]

110

Blocks

State changes inside a { . . . } block last only until the next }:

{This is a \bf bold} statement.

⇓
This is a bold statement.

Commands and macros read for each argument either a single character
or a block enclosed by { and }:

Typeset \textsl M in \textsl{slanted style}.

⇓
Typeset M in slanted style.

Values of optional LATEX macro arguments are enclosed by [. . .].

111

Typewriting versus Typesetting

The ASCII (ISO 646) 7-bit character set with its 94 graphic characters

!"#$%&'()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

`abcdefghijklmnopqrstuvwxyz{|}~

was designed to cover the character repertoire of US typewriters and
teletype printers. Some new symbols such as [\]{|}_ were added in
the hope that they will be useful for programming.

TEX defines a number of shortcuts and macros to access the full range
of “typographic” characters used in high-quality book printing. These
still cannot be found on the standard PC keyboard, which was designed
for 7-bit ASCII.

112

Dashes
ASCII provides only a single combined hyphen-minus character, but
typesetters distinguish carefully between several dash characters:

- ⇒ - hyphen
-- ⇒ – en dash

--- ⇒ — em dash
$-$ ⇒ − minus

The hyphen (-) is the shortest of these and is used to combine separate
words or split words across line-breaks.

The en dash (–) is often used to denote a range of numbers (as in
pages 64–128), or – as in this example – as a punctuation dash.

The em dash is used—like this—as a punctuation dash, often without
surrounding space, especially in US typography.

The minus (−) is a mathematical operator, whose shape matches the
plus (+), unlike the hyphen or dashes. Compare: -+, –+, —+, −+.

113

Quotation marks
Typewriters and ASCII offer only undirectional 'single' and "double"
quotation marks, while typesetters use ‘curly’ and “directed” variants.

TEX input files use the single quotation mark (') and the grave accent
(`) to encode these, as well the mathematical ‘prime’ marker and the
French accents:

` ⇒ ‘ left quote
' ⇒ ’ right quote

`` ⇒ “ left doublequote
'' ⇒ ” right doublequote

$'$ ⇒ ′ prime
\'u ⇒ ú acute accent
\`u ⇒ ù grave accent

The apostrophe (it’s) is identical to the right single quotation mark.
In some older terminal fonts (especially of US origin), the ` and ' characters have a compromise
shape somewhere between the quotation marks ‘’ and the accents `´.

114

Non-ASCII Symbols

¡ !`

¿ ?`

œ \oe

Œ \OE

æ \ae

Æ \AE

å \aa

Å \AA

ø \o

Ø \O

 l \l

 L \L

ß \ss

§ \S

¶ \P

† \dag

‡ \ddag

c© \copyright

£ \pounds

. . . \ldots

Combining characters

ó \'o

ò \`o

ô \^o

ö \"o

õ \~o

ō \=o

ȯ \.o

ŏ \u{o}

ǒ \v{o}

ő \H{o}

⁀oo \t{oo}

o̧ \c{o}

o. \d{o}

o
¯

\b{o}

115

Space – the final frontier
Traditional English typesetting inserts a larger space at the end of a
sentence. TEX believes any space after a period terminates a sentence,
unless it is preceded by an uppercase letter. Parenthesis are ignored.

This works often: J. F. Kennedy’s U.S. budget. Look!
But not always: E.g. NASA. Dr. K. Smith et al. agree.

To correct failures of this heuristic, use

~ ⇒ no-break space
\ ⇒ force normal space
\@ ⇒ following punctuation ends sentence

as in

E.g.\ NASA\@. Dr.~K. Smith et al.\ agree.

⇓
E.g. NASA. Dr. K. Smith et al. agree.

Or disable the distinction of spaces with \frenchspacing.
116

Structure of a LATEX document
First select a document class and its options, e.g. with

\documentclass[12pt,a4paper]{article}

Standard classes: article, report, book, letter, slides.
Publishers often provide authors with their own class as a *.cls file.

Delimit block environments as in

\begin{document} . . . \end{document}

Others: abstract, center, verbatim, itemize, tabular, . . .

Mark headings with

\section{...} \subsection{...}

\subsubsection{...} \paragraph{...}

and LATEX will take care of font sizes, numbering, and table of contents.

TEX is a full programming language with macros, variables, recursion,
conditional branching, file I/O, and a huge collection of add-ons.

117

In the preamble before \begin{document}, numerous default settings
can be changed. For example, reasonable paper margins for A4 paper
can be achieved with

\documentclass[12pt,a4paper,twoside]{article}

\setlength{\oddsidemargin}{-0.4mm} % 25 mm left margin

\setlength{\evensidemargin}{\oddsidemargin}

\setlength{\textwidth}{160mm} % 25 mm right margin

\setlength{\topmargin}{-5.4mm} % 20 mm top margin

\setlength{\headheight}{5mm}

\setlength{\headsep}{5mm}

\setlength{\footskip}{10mm}

\setlength{\textheight}{237mm} % 20 mm bottom margin

\begin{document}

and a style where paragraphs are not indented at the first line, but
spaced apart slightly, can be achieved with

\setlength{\parindent}{0mm}

\setlength{\parskip}{\medskipamount}

118

Mathematical typesetting
In TEX, mathematical formulas are formatted in a completely different
mode from that used for normal text.

Inline formulas such as an (a_n) that appear as part of a normal
paragraph have to be surrounded with $. . . $, while displayed formulas
such as

Fn = Fn−1 + Fn−2 (\[F_n=F_{n-1}+F_{n-2}\])

are entered in between \[. . . \]. In math mode

→ space characters are ignored; TEX adds its own space around op-
erators based on heuristics; manually add thinspace with “\,”

→ a special math italic font with different inter-character spacing
is used, to show single-letter variables better in products

→ many additional macros for special symbols are defined

Math italic is very different and never suitable for writing words!
119

Math symbols – Greek letters

Γ \Gamma

∆ \Delta

Θ \Theta

Λ \Lambda

Ξ \Xi

Π \Pi

Σ \Sigma

Υ \Upsilon

Φ \Phi

Ψ \Psi

Ω \Omega

α \alpha

β \beta

γ \gamma

δ \delta

ǫ \epsilon

ε \varepsilon

ζ \zeta

η \eta

θ \theta

ϑ \vartheta

ι \iota

κ \kappa

λ \lambda

µ \mu

ν \nu

ξ \xi

o o

π \pi

̟ \varpi

ρ \rho

̺ \varrho

σ \sigma

ς \varsigma

τ \tau

υ \upsilon

φ \phi

ϕ \varphi

χ \chi

ψ \psi

ω \omega

120

Binary operations

± \pm

∓ \mp

\ \setminus

· \cdot

× \times

∗ \ast

⋆ \star

⋄ \diamond

◦ \circ

• \bullet

÷ \div

⊳ \lhd

∩ \cap

∪ \cup

⊎ \uplus

⊓ \sqcap

⊔ \sqcup

≀ \wr

© \bigcirc

⊲ \rhd

∨ \vee

∧ \wedge

⊕ \oplus

⊖ \ominus

⊗ \otimes

⊘ \oslash

⊙ \odot

† \dagger

‡ \ddagger

∐ \amalg

E \unlhd

D \unrhd

⊳ \triangleleft

⊲ \triangleright

△ \bigtriangleup

▽ \bigtriangledown

121

Relations

≤ \leq

≺ \prec

� \preceq

≪ \ll

⊂ \subset

⊆ \subseteq

⊑ \sqsubseteq

∈ \in

⊢ \vdash

⌣ \smile

⌢ \frown

⊏ \sqsubset

≥ \geq

≻ \succ

� \succeq

≫ \gg

⊃ \supset

⊇ \supseteq

⊒ \sqsupseteq

∋ \ni

⊣ \dashv

| \mid

‖ \parallel

⊐ \sqsupset

≡ \equiv

∼ \sim

≃ \simeq

≍ \asymp

≈ \approx
∼= \cong

⊲⊳ \bowtie

∝ \propto

|= \models
.

= \doteq

⊥ \perp

⋊⋉ \Join

6< \not<

6≤ \not\leq

6≺ \not\prec

6= \not=

6≥ \not\geq

6≻ \not\succ

6> \not>

6≡ \not\equiv

. . .
122

Arrows

← \leftarrow

⇐ \Leftarrow

→ \rightarrow

⇒ \Rightarrow

↔ \leftrightarrow

⇔ \Leftrightarrow

7→ \mapsto

←֓ \hookleftarrow

↼ \leftharpoonup

↽ \leftharpoondown

⇋ \rightleftharpoons

←− \longleftarrow

⇐= \Longleftarrow

−→ \longrightarrow

=⇒ \Longrightarrow

←→ \longleftrightarrow

⇐⇒ \Longleftrightarrow

7−→ \longmapsto

→֒ \hookrightarrow

⇀ \rightharpoonup

⇁ \rightharpoondown

 \leadsto

↑ \uparrow

⇑ \Uparrow

↓ \downarrow

⇓ \Downarrow

l \updownarrow

m \Updownarrow

ր \nearrow

ց \searrow

ւ \swarrow

տ \nwarrow
123

Misc math symbols

ℵ \aleph

~ \hbar

ı \imath

 \jmath

ℓ \ell

℘ \wp

ℜ \Re

ℑ \Im

∂ \partial

∞ \infty

� \Box

′ \prime

∅ \emptyset

∇ \nabla√
\surd

⊤ \top

⊥ \bot

‖ \|

∠ \angle

△ \triangle

\ \backslash

♦ \Diamond

∀ \forall

∃ \exists

¬ \neg

♭ \flat

♮ \natural

♯ \sharp

♣ \clubsuit

♦ \diamondsuit

♥ \heartsuit

♠ \spadesuit

. . . \ldots · · · \cdots
... \vdots

. . . \ddots

124

Large operators
∑

\sum
∏

\prod
∐

\coprod
∫

\int
∮

\oint

⋂
\bigcap

⋃
\bigcup

⊔
\bigsqcup

∨
\bigvee

∧
\bigwedge

⊙
\bigodot

⊗
\bigotimes

⊕
\bigoplus

⊎
\biguplus

Delimiters
[\lbrack

⌊ \lfloor

⌈ \lceil

{ \lbrace

〈 \langle

[[[\![

〈〈 \langle\!\langle

] \rbrack

⌋ \rfloor

⌉ \rceil

} \rbrace

〉 \rangle

]]]\!]

〉〉 \rangle\!\rangle

125

Alternative names

6= \ne

6= \neq

≤ \le

≥ \ge

{ \{

} \}

→ \to

← \gets

∋ \owns

∧ \land

∨ \lor

¬ \lnot

| \vert

‖ \Vert

Stacking things
ab a^{b} ab a_{b}

a− b \overline{a-b}
︷ ︸︸ ︷

a− b \overbrace{a-b}

a− b \underline{a-b} a− b
︸ ︷︷ ︸

\underbrace{a-b}

=

{

a222

, a ≥ 0
−a, a < 0

=\left\{\begin{array}{cl}

a^{2^{2^2}}, & a \ge 0 \\

-a, & a < 0

\end{array}\right.

126

Including graphics
DVI originally only knew font glyphs and filled rectangles, but dvips

also understands embedded “special” instructions that provide more.

Embedded PostScript (EPS) vector graphics:
Normal PostScript files (*.ps) produce a sequence of pages. An EPS file describes only an image
and is meant to be included into a PostScript page. EPS files lack instructions to output paper,
but define a rectangular “bounding box”, using special %%BoundingBox: comments.

Load the graphics extension of LATEX by adding

\usepackage{graphics}

to the preamble. Then write

\includegraphics{filename.eps}

wherever you want to include the graphics file into your text. Example:

\begin{figure}

\includegraphics{photo.eps}

\caption{This photograph shows the experimental setup.}

\label{fig:expsetup}

\end{figure}
127

Larger diagrams interfere with page breaking. They are best placed
into a figure environment, such that LATEX can move them around.

The automatically assigned figure number can be quoted as in:

See also Figure~\ref{fig:expsetup}

(page~\pageref{fig:expsetup}).

No need to manually renumber figures (or sections)!

Applying coordinate transforms:
If your image does not fit:

\scalebox{0.8}{\includegraphics{...}}

\resizebox{190mm}{60mm}{becomes 19 cm x 6 cm large}

\resizebox{190mm}{!}{this becomes 19 cm wide}

\rotatebox{180}{upside down!}

Changing colours:
This text is \textcolor{red}{printed in red} if ...

This text is printed in red if you include \usepackage{color}.
Default: \definecolor{red}{rgb}{1,0,0}

128

Generating EPS files
A popular X11 vector graphics editor is xfig:

→ Its *.fig files have a simple plain-text format that can be
edited manually, script generated, and leads to useful diffs.

→ Can export *.eps files or *.pstex/*.pstex_t file pairs.
With the latter, LATEX formats all the text in the figure (select “special text” mode in
xfig), with Computer Modern fonts, math mode, macros, symbols, references, etc.

→ Export operation is performed by a separate command-line tool
fig2dev, which can be called from a Makefile:

.SUFFIXES: .eps .fig .pstex .pstex_t $(SUFFIXES)

.fig.eps:

fig2dev -L eps $< $@

.fig.pstex:

.fig.pstex_t:

fig2dev -L pstex_t -p $*.pstex $< $*.pstex_t

fig2dev -L pstex $< $*.pstex

Other EPS sources: pnmtops, jpeg2ps, inkscape, MATLAB, R, gnuplot, Python+matplotlib, . . .

129

Exercise 13 When editing sentences, users of text editors occasionally
leave some word duplicated by by accident. Write a Perl script that reads
plain text files and outputs all their lines that contain the same word twice
in a row. Extend your program to detect also the cases where the two
occurrences of the same word are separated by a line feed.

Exercise 14 Type in the file example.tex on slide 108. Call “latex
example” twice. Preview with “xdvi example” the formatted text in
the device-independent format (DVI) and convert it with “dvips -Ppdf

example” to PostScript. View with “ghostview example.ps” and con-
vert with “ps2pdf example.ps” into the Portable Document Format. Fi-
nally, call “acroread example.pdf &” to inspect the end of this text-
format odyssey.

Exercise 15 Read pages 1–64 of the LATEX book, then write your CV with
LATEX, convert the result into PDF, and put it onto your PWF homepage.
See http://www.cam.ac.uk/cs/pwf/web/ for information on how to set up a homepage under
PWF Linux.

130

Exercise 16 In a job interview for a position as a subeditor of a technical
journal, your skills in spotting typographic mistakes made by LATEX beginners
are tested with this example text:

The -7 dB loss (±2dB) shown on pp. 7-9 can be attributed
to the f(t)= sin(2πft)signal , where t is the the time and
f =48Khz is the ”sampling frequency”.

Can you spot all 14 mistakes? Write down both the probable original incor-
rect LATEX source text, as well as a corrected version.

131

Conclusions

→ Unix is a powerful and highly productive platform for experi-
enced users.

→ This short course could only give you a quick overview to get
you started with exploring advanced Unix facilities.

→ Please try out all the tools mentioned here and consult the
“man” and “info” online documentation.

→ You’ll find on

http://www.cl.cam.ac.uk/teaching/current/UnixTools/

easy to print versions of the bash, make and perl documen-
tation, links to further resources, and hints for installing Linux
on your PC.

⋆ ⋆ Good luck and lots of fun with your projects ⋆ ⋆

132

