
MPhil in Advanced Computer Science

Advanced Topics in Programming Languages

• Lecturer: Dr Peter Sewell

• 16 one-hour meetings (8 in Michaelmas, 8 in Lent)

This module provides an introduction to a variety of advanced topics in
programming-language and semantics research. Participants are expected to
present 30-minute talks based on research papers, and to engage in critical
discussion. The module is also intended to foster critical reading of the research
literature and skill in research presentation.

Papers will be assigned by the lecturer, after discussion, from a list chosen to
cover selected themes, with several papers on each theme. A sample list is below,
though it will change from year to year, and be flexible in response to suggestions
from the students.

Assessment will be by ticks for presentations and a graded essay discussing one
or more of the presented papers.

Sample Papers

1. Low-Level Semantics

(a) Either From system F to typed assembly language, Greg Morrisett, David
Walker, Karl Crary, Neal Glew, TOPLAS 1999; or Typed Assembly

Language, Greg Morrisett, ATTAPL.

(b) Proof-Carrying Code, George Necula, ATTAPL.

(c) Effect Types and Region-Based Memory Management, Fritz Henglein,
Henning Makholm, Henning Niss, ATTAPL.

(d) Safe manual memory management in Cyclone, Nikhil Swamy, Michael
W. Hicks, Greg Morrisett, Dan Grossman, Trevor Jim, Sci. Comput.
Program. 62(2): 122-144 (2006)

(e) A formally verified compiler back-end, Xavier Leroy, draft, 2008

(f) Formalizing and Verifying Semantic Type Soundness for a Simple

Compiler, N. Benton and U. Zarfaty, PPDP 2007

2. High-level Concurrency

(a) Composable memory transactions, Tim Harris, Simon Marlow, Simon
Peyton-Jones, Maurice Herlihy, PPDP 05

(b) Another Transactions paper - perhaps High-Level Small-Step

Operational Semantics for Transactions, Katherine F. Moore, Dan
Grossman, POPL 2008

1



(c) CML. Perhaps from The Essence of Concurrent ML. Prakash
Panangaden and John Reppy. In Flemming Nielson, editor, ML with
Concurrency, Chapter 1. Springer-Verlag, 1997.

(d) Pict and Join Calculus. Pict: A Programming Language Based on

the Pi-Calculus, Benjamin C. Pierce and David N. Turner. In Proof,
Language and Interaction: Essays in Honour of Robin Milner, pages
455-494. MIT Press, 2000; A Calculus of Mobile Agents, Cédric Fournet,
Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, Didier Rémy,
CONCUR 1996

3. Fancy Types

(a) Dependent Types, David Aspinall and Martin Hofmann, ATTAPL

(b) Type inference. Either The Essence of ML Type Inference, François
Potter, Didier Rémy, ATTAPL, or one of the papers on Bidirectional
Type Checking

(c) ML modules. Manifest types, modules, and separate compilation, Xavier
Leroy, POPL 1994, and A type-theoretic approach to higher-order

modules with sharing, Robert Harper and Mark Lillibridge, POPL 1994.

(d) GADTs. Perhaps Simple unification-based type inference for GADTs,
Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn, ICFP 2006

(e) Fω<:
. The relevant chapters from Types and Programming Languages,

Pierce.

(f) Scala. Perhaps A Core Calculus for Scala Type Checking, Vincent
Cremet, François Garillot, Serguei Lenglet, Martin Odersky. MFCS 06.

Preparatory reading

Some familiarity with operational semantics and type systems will be useful,
e.g. from the first 15 chapters of [TAPL] and/or the notes for the Computer
Laboratory courses on Semantics of Programming Languages, Foundations of
Functional Programming, and Types.

References

TAPL Types and Programming Languages. MIT Press. Benjamin C. Pierce.

ATTAPL Advanced Topics in Types and Programming Languages. MIT Press. Edited
by Benjamin C. Pierce.

2


