

Per-packet processing in an IP Router

- 1. Accept packet arriving on an incoming link.
- Lookup packet destination address in the forwarding table, to identify outgoing port(s).
- 3. Manipulate packet header: e.g., decrement TTL, update header checksum.
- 4. Send packet to the outgoing port(s).
- 5. Buffer packet in the queue.
- 6. Transmit packet onto outgoing link.

11

Using the nf-test machines

- * Each group is allocated an nf-test machine
- These machines are headless (no KVM) and located in SW02 (alcove)
- Login via ssh; set your own password and go We suggest running "uncerver" and then using "uncurated as a useful way to leave jobs/desktop running and reconnect if you need to move location.
- SW02 is a busy classroom please respect others If you need to gain physical access to an nf-test machine
 Do it quietly! You maybe refused entry in the afternoons - don't take it personally.

nf-test machine rules

- Abuse the machines that's the end of this module for you - zero tolerance policy.
- only connect eth0 to the cisco (access) switch
- these machines run a firewall for a reason
 if it doesn't work for you, lets fix the rules
- Play nicely with each other; your interoperability marks depend on it.

nf-test machine information

- Warning: Files stored on nf-test machines are not backed up - and may be lost at any time.
- You must make sure that you regularly copy your files into your REAL (computer laboratory) home directory as a back-up
- Machines fail they usually fail 24 hours before the big deadline!

Tree Structure		
NF2		
—bin	(scripts for running simulations and s environment)	setting up the
—bitfiles (contains the bitfiles for all projects that have been synthesized)		
— lib (stable common modules and common parts needed for simulation/synthesis/design)		
projects (user projects, including reference designs)		
	ng an Internet Router (P33) Michaelmas 2009 22	CAMBRIDGE 100 - 100

Testing: Simulation (3)

• Example functions:

- nf_PCI_read32(delay, batch, addr, expect)
- nf_PCI_write32(delay, batch, addr, value)
- nf_packet_in(port, length, delay, batch, pkt)
- nf_expected_packet(port, length, pkt)
- nf_dma_data_in(length, delay, port, pkt)
- nf_expected_dma_data(port, length, pkt)
- make_IP_pkt(length, da, sa, ttl, dst_ip, src_ip)

Synthesis

 To synthesize your project

 Run make in the synth directory (/root/NF2/projects/bir_starter/synth)

Regression Tests

- Test hardware module
- · Perl Infrastructure provided includes:
 - Read/Write registers
 - Read/Write tables
 - Send Packets

- Check Counters

Example Regression Tests

• For a Router...

NetFPGA Building ar

- Send Packets from CPU
- Longest Prefix Matching
- Longest Prefix Matching Misses
- Packets dropped when queues overflow
- Receiving Packets with IP TTL <= 1
- Receiving Packets with IP options or non IPv4
- Packet Forwarding

- Dropping packets with bad IP Checksum

Creating a Regression Test Useful functions: __nftest_regwrite(interface, addr, value)

- nftest_regread(interface, addr)
- nftest_send(interface, frame)
- nftest_expect(interface, frame)

- \$pkt = NF2::IP_pkt->new(len => \$length, DA => \$DA, SA => \$SA, ttl => \$TTL, dst_ip => \$dst_ip, src_ip => \$src_ip);

Creating a Regression Test (2)

Your task:

SetFPGR Building an Inter

1. Template files /root/NF2/projects/bir_starter/regress/test_fwd_sourcePort0/run.pl

2. Implement your Perl verif tests

