
Exceptions

Error Handling

 You do a lot on this in your practicals, so we'll just touch
on it here

 The traditional way of handling errors is to return a value
that indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the 'codes' are for

success, etc.
 The result can't be returned in the usual way

public int divide(double a, double b) {
 if (b==0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions

 An exception is an object that can be thrown up by a
method when an error occurs and caught by the
calling code

public double divide(double a, double b) throws DivideByZeroException {
 if (b==0) throw DivideByZeroException();
 else return a/b
}

…

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Exceptions

 Advantages:
 Class name is descriptive (no need to look up codes)
 Doesn't interrupt the natural flow of the code by

requiring constant tests
 The exception object itself can contain state that

gives lots of detail on the error that caused the
exception

 Can't be ignored, only handled

Copying Java Objects

Cloning

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning

 Every class in Java ultimately inherits from the
Object class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy
actually means

Copying Java Objects

Cloning

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning

 Every class in Java ultimately inherits from the
Object class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy
actually means

Cloning

public class MyClass {
 private float price = 77;
}

MyClass
object

(price=77)
Clone

MyClass
object

(price=77)

MyClass
object

(price=77)

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass
object Shallo

w

MyOtherClass
object MyClass

object

MyOtherClass
object

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a

shallow copy
 But Java developers were worried that this might not be

appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this

interface, it fails

Marker Interfaces

 If you go and look at what's in the Cloneable interface,
you'll find it's empty!! What's going on?

 Well, the clone() method is already inherited from Object
so it doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to

label classes
 This approach is found occasionally in the Java libraries

Distributing Java Classes

Distributing Classes
 So you've written some great classes that might be useful

to others. You release the code. What if you've named your
class the same as someone else?
 E.g. There are probably 100s of “Vector” classes out

there..!

 Most languages define some way that you can keep your
descriptive class name without getting it confused with
others.

 Java uses packages. A class belongs to a package
 A nameless 'default' package unless you specify

otherwise
 You're supposed to choose a package name that is

unique.
 Sun decided you should choose your domain name
 You do have your own domain name, right? ;)

Distributing Classes

package uk.cam.ac.rkh23;

import uk.cam.ac.abc21.*;

Class Whatever {
…
}

Class Whatever is part of this package

Import all the Classes from some
other package

 You get to do lots more about this in your practicals

Access Modifiers Revisited

 Most Languages:
 public – everyone can access directly
 protected – only subclasses can access directly
 private – nothing can access directly

 Java adds:
 package – anything in the same package can

access directly

The Java Class Libraries

Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes
in the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces

 <<interface>> Map
 Like relations in DM 1

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

Generics

 The original Collections framework just dealt with
collections of Objects
 Everything in Java “is-a” Object so that way our

collections framework will apply to any class we like
without any special modification.

 It gets messy when we get something from our
collection though: it is returned as an Object and
we have to do a narrowing conversion to make use
of it:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Generics

 It gets worse when you realise that the add() method
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Generics

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-
time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Notation in Java API

 Set<E>
 List<E>
 Queue<E>
 Map<K,V>

Polymorphism Revisited

 You might recognise Generics as the “polymorphism”
you met in FoCS when using ML.

 Both allow you to write code that works for multiple
types

 (Parametric) Polymorphism [FP] or Generics [OOP]
 The types are determined at compile-time

 (Sub-type or ad-hoc) Polymorphism [OOP]
 The types are determined at run-time
 Needs an inheritance tree

Generics and SubTyping
// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;<<interface>>

Collection
Person

<<interface>>
Collection

Animal

So a list of Persons is a list of Animals, yes?

Comparing Java Classes

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (object1==object2) mean??

 Same object?
 Same state (“value”) but different object?

Option 1: a==b, a!=b

 These compare the references

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

p1==p1;

False (references differ)

True (references differ)

True (references the same)

String s = “Hello”;
if (s==”Hello”) System.out.println(“Hello”);
else System.out.println(“Nope”);

Option 2: The equals() Method

 Object defines an equals() method. By default, this
method just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

String s1 = “Bob”;
String s2 = “Bob”;

(s1==s2);

False (we haven't
overridden the equals()
method so it just
compares references

True (String has equals()
overridden)

Option 3: Comparable<T> Interface

int compareTo(T obj);

 Part of the Collections Framework
 Returns an integer, r:

 r<0 This object is less than obj
 r==0 This object is equal to obj
 r>0 This object is greater than obj

Option 3: Comparable<T> Interface
public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Option 4: Comparator<T> interface

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and
allows us to specify a particular comparator
for a particular job

 E.g. a Person might have a compareTo()
method that sorts by surname. We might
wish to create a class AgeComparator that
sorts Person objects by age. We could then
feed that to a Collections object.

Some Examples...

Java's I/O framework

 Support for system input and output (from/to sources
such as network, files, etc).

<<interface>>
Collection

Reader
Abstract class for reading
data from some source

<<interface>>
Collection

InputStreamReader

<<interface>>
Collection

FileReader

Concrete Instance that works
 on an InputStream object

Specialisation that allows us to
specify a filename, then creates
and InputStream for it

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

