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Inner product spaces
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Introduction
In this section we shall consider what it means to represent a
function f (x) in terms of other, perhaps simpler, functions. One
example is Fourier series of the form

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)] .

How are the coefficients an and bn related to the choice of f (x) and
what other representations can we use?
We shall take a quite general approach to these questions and derive
the necessary framework that underpins a wide range of applications.
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Linear space
Definition (Linear space)
A non-empty set V of vectors is a linear space over a field F of
scalars if the following are satisfied.

1. Binary operation + such that if u, v ∈ V then u + v ∈ V
2. + is associative: for all u, v ,w ∈ V

then (u + v) + w = u + (v + w)

3. There exists a zero vector, written ~0 ∈ V , such that ~0 + v = v for
all v ∈ V .

4. For all v ∈ V , there exists an inverse vector, written −v , such
that v + (−v) = ~0

5. + is commutative: for all u, v ∈ V then u + v = v + u
6. For all v ∈ V and a ∈ F then av ∈ V is defined
7. For all a ∈ F and u, v ∈ V then a(u + v) = au + av
8. For all a,b ∈ F and v ∈ V then (a + b)v = av + bv

and a(bu) = (ab)u
9. For all v ∈ V then 1v = v , where 1 ∈ F is the unit scalar.
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Choice of scalars
Two common choices of scalar fields, F, are the real numbers, R, and
the complex numbers, C, giving rise to real and complex linear
spaces, respectively.
The term vector space is a synonym for linear space.
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Linear subspace

Definition (Linear subspace)
A subset W ⊂ V is a linear subspace of V if the W is again a linear
space over the same field of scalars.
Thus W is a linear subspace if W 6= ∅ and for all u, v ∈W
and a,b ∈ F we have that au + bv ∈W .
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Linear combinations and spans

Definition (Linear combinations)
If V is a linear space and v1, v2, . . . , vn ∈ V are vectors in V
then u ∈ V is a linear combination of v1, v2, . . . , vn if there exist
scalars a1,a2, . . . ,an ∈ F such that

u = a1v1 + a2v2 + · · ·+ anvn .

We also define the span of a set of vectors as

span{v1, v2, . . . , vn} = {u ∈ V : u is a linear combination of v1, v2, . . . , vn} .

Thus, W = span{v1, v2, . . . , vn} is a linear subspace of V .
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Linear independence

Definition (Linear independence)
Let V be a linear space. The vectors v1, v2, . . . , vn ∈ V are linearly
independent if whenever

a1v1 + a2v2 + · · ·+ anvn = ~0 a1,a2, . . .an ∈ F

then a1 = a2 = · · · = an = 0
The vectors v1, v2, . . . , vn are linearly dependent otherwise.
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Bases

Definition (Basis)
A finite set of vectors v1, v2, . . . vn ∈ V is a basis for the linear space V
if v1, v2, . . . , vn are linearly independent and V = span{v1, v2, . . . , vn}.
The number n is called the dimension of V , written n = dim(V ).
A result from linear algebra is that while there are infinitely many
choices of basis vectors any two bases will always consist of the
same number of element vectors. Thus, the dimension of a linear
space is well-defined.
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Inner products and inner product spaces
Suppose that V is either a real or complex linear space (that is, the
scalars F = R or C).

Definition (Inner product)
The inner product of two vectors u, v ∈ V , written 〈u, v〉 ∈ F, is a
scalar value satisfying

1. For each v ∈ V , 〈v , v〉 is a non-negative real number,
so 〈v , v〉 ≥ 0

2. For each v ∈ V , 〈v , v〉 = 0 if and only if v = ~0
3. For all u, v ,w ∈ V and a,b ∈ F, 〈au + bv ,w〉 = a〈u,w〉+ b〈v ,w〉
4. For all u, v ∈ V then 〈u, v〉 = 〈v ,u〉.

A linear space together with an inner product is called an inner
product space.
Here, 〈v ,u〉 denotes the complex conjugate of the complex
number 〈v ,u〉. Note that for a real linear space (so, F = R) the
complex conjugate is redundant so the last condition above just says
that 〈u, v〉 = 〈v ,u〉 = 〈v ,u〉.
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Useful properties of the inner product
Before looking at some examples of inner products there are several
consequences of the definition of an inner product that are useful in
calculations.

1. For all v ∈ V and a ∈ F then 〈av ,av〉 = |a|2〈v , v〉
2. For all v ∈ V , 〈~0, v〉 = 0
3. For all v ∈ V and finite sequences of vectors u1,u2, . . . ,un ∈ V

and scalars a1,a2, . . . ,an then〈
n∑

i=1

aiui , v

〉
=

n∑
i=1

ai〈ui , v〉〈
v ,

n∑
i=1

aiui

〉
=

n∑
i=1

ai〈v ,ui〉
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Inner product: examples

Example (Euclidean space, Rn)
V = Rn with the usual operations of vector addition and multiplication
by a real-valued scalar is a linear space over R. Given two
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn we can
define an inner product by

〈x , y〉 =
n∑

i=1

xiyi .

Often this inner product is known as the dot product and is
written x · y .

Example
Similarly, for V = Cn, we can define an inner product by

〈x , y〉 = x · y =
n∑

i=1

xiyi .
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Example (Space of continuous functions)
V = C[a,b], the space of continuous functions f : [a,b]→ C with the
standard operations of the sum of two functions and multiplication by
a scalar, is a linear space over C and we can define an inner product
for f ,g ∈ C[a,b] by

〈f ,g〉 =

∫ b

a
f (x)g(x)dx .
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Norms
The concept of a norm is closely related to an inner product and we
shall see that there is a natural way to define a norm given an inner
product.

Definition (Norm)
Let V be a real or complex linear space so that, F = R or C. A norm
on V is a function from V to R+, written ||v ||, that satisfies

1. For all v ∈ V , ||v || ≥ 0

2. ||v || = 0 if and only if v = ~0
3. For each v ∈ V and a ∈ F, ||av || = |a| ||v ||
4. For all u, v ∈ V , ||u + v || ≤ ||u||+ ||v || (the triangle inequality).

A norm can be thought of as a generalisation of the notion of
distance, where for any two vectors u, v ∈ V the number ||u − v || is
the distance between u and v .
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Norms: examples

Example (Eucidean norm)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x || = +

√√√√ n∑
i=1

|xi |2 .

Example (Uniform norm)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x ||∞ = max {|xi | : i = 1,2, . . . ,n} .

Example (Uniform norm)
If V = C[a,b] then for each function f ∈ V , define

||f ||∞ = max {|f (x)| : x ∈ [a,b]} .
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Cauchy-Schwarz inequality
Theorem (Cauchy-Schwarz inequality)
Let V be a real or complex inner product space with scalars F then for
all u, v ∈ V

|〈u, v〉|2 ≤ 〈u,u〉 〈v , v〉 .

Proof.
If v = ~0 then the result holds trivially. Now assume v 6= ~0 so
that 〈v , v〉 6= 0 and let λ ∈ F then

0 ≤ 〈u − λv ,u − λv〉 = 〈u,u〉 − λ〈u, v〉 − λ〈v ,u〉+ |λ|2〈v , v〉

Now set λ = 〈u,v〉
〈v ,v〉 so that

0 ≤ 〈u,u〉 − |〈u, v〉|
2

〈v , v〉

and hence
|〈u, v〉|2 ≤ 〈u,u〉〈v , v〉 .
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Inner products and norms
Given an inner product space, V , with inner product 〈·, ·〉 there is a
natural choice of norm, namely, for all v ∈ V

||v || = +
√
〈v , v〉 .

Most of the properties that make this a norm follow simply from the
properties of the inner product but we shall use the Cauchy-Schwarz
inequality to establish the triangle inequality. We have,

||u + v ||2 = 〈u + v ,u + v〉
= ||u||2 + 〈u, v〉+ 〈v ,u〉+ ||v ||2

≤ ||u||2 + 2|〈u, v〉|+ ||v ||2

≤ ||u||2 + 2||u|| ||v ||+ ||v ||2

= (||u||+ ||v ||)2 .

Hence, the triangle inequality, ||u + v || ≤ ||u||+ ||v || holds.
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Orthogonal and orthonormal systems
Let V be an inner product space and take the natural choice of norm.

Definition (Orthogonality)
We say that u, v ∈ V are orthogonal (written u ⊥ v ) if 〈u, v〉 = 0.

Definition (Orthogonal system)
A finite or infinite sequence of vectors (ui ) in V is an orthogonal
system if

1. ui 6= ~0 for all such vectors ui

2. ui ⊥ uj for all i 6= j .

Definition (Orthonormal system)
An orthogonal system is called an orthonormal system if, in
addition, ||ui || = 1 for all such vectors ui .
A vector v ∈ V such that ||v || = 1 is called a unit vector.
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Theorem
Suppose that {e1,e2, . . . ,en} is an orthonormal system in the inner
product space V . If u =

∑n
i=1 aiei then ai = 〈u,ei〉.

Proof.

〈u,ei〉 = 〈a1e1 + a2e2 + · · ·+ anen,ei〉
= a1〈e1,ei〉+ a2〈e2,ei〉+ · · ·+ an〈en,ei〉
= ai .

Hence, if {e1,e2, . . . ,en} is an orthonormal system then for
all u ∈ span{e1,e2, . . . ,en} we have

u =
n∑

i=1

aiei =
n∑

i=1

〈u,ei〉ei .
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Fourier coefficients
Let V be an inner product space and e1,e2, . . . ,en an orthonormal
system (n being finite or infinite).

Definition (Generalized Fourier coefficients)
Given a vector u ∈ V , the scalars 〈u,ei〉 (i = 1,2, . . . ,n) are called the
Generalized Fourier coefficients of u with respect to the given
orthonormal system.
These coefficients are generalized in the sense that they refer to a
general orthonormal system.
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Let V be an inner product space and e1,e2, . . . ,en an orthonormal
system. If a1,a2, . . . ,an and b1,b2, . . . ,bn are any sequences of
scalars then 〈

n∑
i=1

aiei ,

n∑
i=1

biei

〉
=

n∑
i=1

aibi .

Equivalently, for u, v ∈ span{e1,e2, . . . ,en}

〈u, v〉 =
n∑

i=1

〈u,ei〉〈v ,ei〉 .

A consequence of these relations is the following theorem.

Theorem (Generalized Pythagorean Theorem)
Suppose that {u1,u2, . . . ,un} is an orthogonal system in V
and a1,a2, . . . ,an are scalars then

||
n∑

i=1

aiui ||2 =
n∑

i=1

|ai |2 ||ui ||2 .
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Orthogonal projections
Suppose that V is an inner product space and e1,e2, . . . ,en an
orthonormal system. Define W = span{e1,e2, . . . ,en} and let u ∈ V
be any vector. We have seen that for u ∈W

u =
n∑

i=1

〈u,ei〉ei

but if u 6∈W then certainly

u 6=
n∑

i=1

〈u,ei〉ei

since u is not a linear combination of the vectors e1,e2, . . . ,en.
Nevertheless, there is a close connection between u and the
expression

∑n
i=1〈u,ei〉ei .

Definition (Orthogonal projection)
For all u ∈ V we define the orthogonal projection of u in W , ũ, by

ũ =
n∑

i=1

〈u,ei〉ei .
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Theorem
For each u ∈ V and for all w ∈W

1. 〈u − ũ,w〉 = 0
2. ||u − w ||2 = ||u − ũ||2 + ||ũ − w ||2.

Proof

First 〈u − ũ,ej〉 = 0 for all j = 1,2, . . . ,n since

〈u − ũ,ej〉 = 〈u,ej〉 −
〈

n∑
i=1

〈u,ei〉ei ,ej

〉
= 〈u,ej〉 −

n∑
i=1

〈u,ei〉〈ei ,ej〉

= 〈u,ej〉 − 〈u,ej〉〈ej ,ej〉 = 〈u,ej〉 − 〈u,ej〉 = 0 .
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So take any w ∈W with w =
∑n

j=1 bjej for some scalars b1,b2, . . . ,bn
and

〈u − ũ,w〉 =

〈
u − ũ,

n∑
j=1

bjej

〉
=

n∑
j=1

bj〈u − ũ,ej〉 =
n∑

j=1

bj · 0 = 0 .

Now (u − ũ) ⊥ w for all w ∈W and so since ũ − w ∈W
(u − ũ) ⊥ (ũ − w). Hence,

||u − w ||2 = ||u − ũ + ũ − w ||2 = ||u − ũ||2 + ||ũ − w ||2 .
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Best approximation

Theorem
Let V be an inner product space and {e1,e2, . . . ,en} an orthonormal
system. Let W = span{e1,e2, . . . ,en} and u ∈ V be any vector
then ũ =

∑n
i=1〈u,ei〉ei is the closest vector to u in W. Moreover, ũ is

the unique such vector in W.

Proof.
For all w ∈W ,

||u − w ||2 = ||u − ũ||2 + ||ũ − w ||2

and so ||u − ũ|| ≤ ||u − w || for all w ∈W .
To show uniqueness, suppose that ||u − ũ|| = ||u − w || for
some w ∈W then ||ũ − w || = 0 and so w = ũ.
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Infinite orthonormal systems
We now consider the situation of an inner product space, V ,
with dim(V ) =∞ and consider orthonormal systems {e1,e2, . . .}
consisting of infinitely many vectors.

Definition (Convergence in norm)
Let {u1,u2, . . .} be an infinite sequence of vectors in the normed
linear space V and let {a1,a2, . . .} be a sequence of scalars. We say
that the series

∞∑
n=1

anun

converges in norm to w ∈ V if

lim
m→∞

||w −
m∑

n=1

anun|| = 0 .
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Closure and completeness
Two further properties are defined for an infinite orthonormal
system {e1,e2, . . .} in an inner product space V .

Definition (Closed)
The system is called closed in V if for all u ∈ V

lim
m→∞

||u −
m∑

n=1

〈u,en〉en|| = 0 .

Definition (Complete)
The system is called complete in V if the zero vector u = ~0 is the only
solution to the set of equations

〈u,en〉 = 0 n = 1,2, . . . .
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Remarks on closure and completeness
I It can be shown that a closed infinite orthonormal

system {e1,e2, . . .} is necessarily complete (but not the
converse).

I If a system is not closed then there must exist some u ∈ V such
that the linear combination

m∑
n=1

〈u,en〉en

cannot be made arbitrarily close to u, for all choices of m.
I If the system is closed it may still be that the required number of

terms in the above linear combination for a “good” approximation
is too great for practical purposes.

I Seeking alternative closed systems of orthonormal vectors may
produce “better” approximations in the sense of requiring fewer
terms for a given accuracy.

31



Fourier series
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Representing functions
In seeking to represent functions as linear combinations of simpler
functions we shall need to consider spaces of functions with closed
orthonormal systems.

Definition (piecewise continuous)
A function is piecewise continuous if it is continuous, except at a finite
number of points and at each such point of discontinuity, the right and
left limits exists and are finite.
The space, E , of piecewise continuous functions f : [−π, π]→ C is
seen to be a linear space, under the convention that we regard two
functions in E as identical if they are equal at all but a finite number of
points.
For f ,g ∈ E , then

〈f ,g〉 =
1
π

∫ π

−π
f (x)g(x)dx

defines an inner product on E .
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A closed infinite orthonormal system for E
An important result is that{

1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}
is a closed infinite orthonormal system in the space E .
Here we shall just demonstrate orthonormality and omit establishing
that this system is closed.
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Writing
||f || = +

√
< f , f >

as the norm associated with our inner product, it can be establish that

|| 1√
2
||2 = 1

and similarily that for each n = 1,2, . . .

|| sin(nx)||2 = || cos(nx)||2 = 1

and that for m,n ∈ N
I 〈 1√

2
, sin(nx)〉 = 0

I 〈 1√
2
, cos(nx)〉 = 0

I 〈sin(mx), cos(nx)〉 = 0
I 〈sin(mx), sin(nx)〉 = 0, m 6= n
I 〈cos(mx), cos(nx)〉 = 0, m 6= n.
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Fourier series
From our knowledge of closed orthonormal systems {e1,e2, . . .} we
know that we can represent any function f ∈ E by a linear
combination

∞∑
n=1

〈f ,en〉en .

We now turn to consider the individual terms 〈f ,en〉en in the case of
the closed orthonormal system{

1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}
.

There are three cases, either en = 1√
2

or sin(nx) or cos(nx). Recall
that the vectors en are actually functions
in E = {f : [−π, π]→ C : f is piecewise continuous}
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If en = 1/
√

2 then

〈f ,en〉en =
1
π

(∫ π

−π
f (t)

1√
2

dt
)

1√
2

=
1

2π

∫ π

−π
f (t)dt .

If en = sin(nx) then

〈f ,en〉en =
1
π

(∫ π

−π
f (t) sin(nt) dt

)
sin(nx) .

If en = cos(nx) then

〈f ,en〉en =
1
π

(∫ π

−π
f (t) cos(nt) dt

)
cos(nx) .
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Fourier coefficients
Thus the linear combination

∞∑
n=1

〈f ,en〉en

becomes the familiar Fourier series for a function f , namely

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

where

an =
1
π

∫ π

−π
f (x) cos(nx) dx , n = 0,1,2, . . .

bn =
1
π

∫ π

−π
f (x) sin(nx) dx , n = 1,2,3, . . . .

Note how the constant term is written a0/2 where a0 = 1
π

∫ π
−π f (x)dx .
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Periodic functions
Our Fourier series

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

defines a function, g(x), say, that is 2π-periodic in the sense that

g(x + 2π) = g(x), for all x ∈ R .

Hence, it is convenient to extend f ∈ E to a 2π-periodic function
defined on R instead of being restricted to [−π, π].
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Even and odd functions
A particularly useful simplification occurs when the function f ∈ E is
either an even function, that is, for all x ,

f (−x) = f (x)

or an odd function, that is, for all x ,

f (−x) = −f (x) .

The following properties can be easily verified.
1. If f ,g are even then fg is even
2. If f ,g are odd then fg is even
3. If f is even and g is odd then fg is odd

4. If g is odd then for any h > 0 then
∫ h
−h g(x)dx = 0

5. If g is even then for any h > 0 then
∫ h
−h g(x)dx = 2

∫ h
0 g(x)dx .
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Even functions and cosine series
Recall that the Fourier coefficients are given by

an =
1
π

∫ π

−π
f (x) cos(nx) dx , n = 0,1,2, . . .

bn =
1
π

∫ π

−π
f (x) sin(nx) dx , n = 1,2,3, . . .

so if f is even then they become

an =
2
π

∫ π

0
f (x) cos(nx) dx , n = 0,1,2, . . .

bn = 0, n = 1,2,3, . . . .
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Odd functions and sine series
Similarly, the Fourier coefficients

an =
1
π

∫ π

−π
f (x) cos(nx) dx , n = 0,1,2, . . .

bn =
1
π

∫ π

−π
f (x) sin(nx) dx , n = 1,2,3, . . . ,

for the case where f is an odd function become

an = 0, n = 0,1,2, . . .

bn =
2
π

∫ π

0
f (x) sin(nx) dx , n = 1,2,3, . . . .
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Fourier series: examples I
Consider f (x) = x for x ∈ [−π, π] then f is clearly odd and so we need
to calculate a sine series with coefficients, bn, n = 1,2, . . . given by

bn =
2
π

∫ π

0
x sin(nx) dx =

2
π

{[
−x

cos(nx)

n

]π
0

+

∫ π

0

cos(nx)

n
dx
}

=
2
π

{
−π (−1)n

n
+

[
sin(nx)

n2

]π
0

}
=

2
π

{
−π (−1)n

n
+ 0
}

=
2(−1)n+1

n
.

Hence the Fourier series of f (x) = x is

∞∑
n=1

2(−1)n+1

n
sin(nx) .

Observe that the series does not agree with f (x) at x = ±π — a
matter that we shall return to later.
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Fourier series: examples II
Now suppose f (x) = |x | for x ∈ [−π, π] which is clearly an even
function so we need to construct a cosine series with coefficients

a0 =
2
π

∫ π

0
xdx =

2
π

π2

2
= π

and for n = 1,2, . . .

an =
2
π

∫ π

0
x cos(nx) dx =

2
π

{[
x sin(nx)

n

]π
0
−
∫ π

0

sin(nx)

n
dx
}

=
2
π

{[
cos(nx)

n2

]π
0

}
=

2
π

{
(−1)n − 1

n2

}
=

{
− 4
πn2 n is odd

0 n is even
.

Hence, the Fourier series of f (x) = |x | is

π

2
−
∞∑

k=1

4
π(2k − 1)2 cos ((2k − 1)x) .
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Complex Fourier series I
We have used real-valued functions sin(nx) and cos(nx) as our
orthonormal system for the linear space E but we can also use
complex-valued functions. In this case, we should amend our inner
product to

〈f ,g〉 =
1

2π

∫ π

−π
f (x)g(x)dx .

A suitable orthonormal system in this case is the collection of
functions {

1,eix ,e−ix ,ei2x ,e−i2x , . . .
}
.

Then if f ∈ E we have a representation, known as the complex
Fourier series of f ∈ E , given by

∞∑
n=−∞

cneinx

where
cn =

1
2π

∫ π

−π
f (x)e−inxdx , n = 0,±1,±2, . . . .
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Complex Fourier series II
Euler’s formula (eix = cos(x) + i sin(x)) gives for n = 1,2, . . . that

einx = cos(nx) + i sin(nx)

e−inx = cos(nx)− i sin(nx)

and ei0x = 1. Using these relations it can be shown that
for n = 1,2, . . .

cn =
an − ibn

2
, c−n =

an + ibn

2
.

Hence,
an = cn + c−n, bn = i(cn − c−n)

and
c0 =

1
2π

∫ π

−π
f (x)e−i0xdx =

1
2π

∫ π

−π
f (x)dx =

a0

2
.
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Pointwise convergence and Dirichlet’s conditions
The closure property of the trigonometric orthonormal system
guarantees that the Fourier series for any function f ∈ E converges in
norm to f . That is,

lim
m→∞

||f (x)−
(

a0

2
+

m∑
n=1

[an cos(nx) + bn sin(nx)]

)
|| = 0

or, equivalently,

lim
m→∞

∫ π

−π

∣∣∣∣∣f (x)−
(

a0

2
+

m∑
n=1

[an cos(nx) + bn sin(nx)]

)∣∣∣∣∣
2

dx = 0 .

As we have already seen in the example of f (x) = x , this does not
imply convergence to f (x) at every point x .
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The Dirichlet conditions
We now consider conditions on the space of functions that allow us to
determine how the Fourier series behaves at individual points x .

Definition (Dirichlet conditions)
We define a subspace, E ′, of E by the Dirichlet conditions:

1. f ∈ E
2. For all x ∈ [−π, π) both the left and right derivatives exist (and

are finite).

Recall, that in the space E each function has a left and right limit at
every point. Let these values be f (x−) and f (x+), respectively.
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Theorem (Dirichlet’s theorem)
For all x ∈ [−π, π] the Fourier series of a function f ∈ E ′ converges to
the value of the expression

f (x−) + f (x+)

2
.

I Here we should consider f not just defined on [−π, π] but also
make it 2π-periodic to handle the end points ±π correctly.

I Recall that functions f ∈ E can have at most a finite number of
points of discontinuity (that is, points where f (x−) and f (x+)
differ).

I Hence, we can conclude that if a function f satisfies the Dirichlet
conditions then the function’s Fourier series converges to f at all
points where f is continuous and at points of discontinuity it
converges to the average of the left and right hand limits. This
was indeed the case in our earlier example where f (x) = x .
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General intervals
We have so far considered functions defined on the interval [−π, π]
but we may readily extend our approach to a general interval of the
form [a,b] (for any a < b). If we define E [a,b] to be the space of
piecewise continuous functions f : [a,b]→ C then we may define the
Fourier series of f ∈ E [a,b] as

a0

2
+
∞∑

n=1

[
an cos

(
2nπx

(b − a)

)
+ bn sin

(
2nπx

(b − a)

)]
where

an =
2

(b − a)

∫ b

a
f (x) cos

(
2nπx

(b − a)

)
dx , n = 0,1,2, . . .

bn =
2

(b − a)

∫ b

a
f (x) sin

(
2nπx

(b − a)

)
dx , n = 1,2,3, . . . .
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This may be justified by showing, for example, that{
1√
2
, cos

(
2nπx

(b − a)

)
, sin

(
2nπx

(b − a)

)
for n = 1,2, . . .

}
is an infinite orthonormal system for functions in E [a,b] with respect
to the inner product

〈f ,g〉 =
2

(b − a)

∫ b

a
f (x)g(x)dx .

Exercise: establish the corresponding details for the case of the
complex Fourier series representation and a general interval [a,b].
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Fourier transforms
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Introduction
I We have seen how functions f : [−π, π]→ C, f ∈ E can be

represented in alternative ways using closed orthonormal
systems, such as

∞∑
n=−∞

cneinx

where

cn =
1

2π

∫ π

−π
f (x)e−inxdx n = 0,±1,±2, . . . .

The domain [−π, π] can be swapped for a general interval [a,b]
and the function can be regarded as L-periodic and defined for
all R, where L = (b − a) <∞ is the length of the interval.

I We shall now consider the situation where f : R→ C may be a
non-periodic function.
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Fourier transform

Definition (Fourier transform)
For f : R→ C define the Fourier transform of f to be the
function F : R→ C given by

F (ω) = F[f ](ω) =
1

2π

∫ ∞
−∞

f (x)e−iωxdx

whenever the integral exists.
We shall use the notation F (ω) or F[f ](ω) as convenient. The
notation f̂ (ω) is also seen widely in the literature.
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For functions f : R→ C define the two properties
1. piecewise continuous: if f is piecewise continuous on every finite

interval. Thus f may have an infinite number of discontinuities but
only a finite number in any subinterval.

2. absolutely integrable: if∫ ∞
−∞
|f (x)|dx <∞

Let G(R) be the collection of all functions f : R→ C that are
piecewise continuous and absolutely integrable.
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Immediate properties
It may be shown that G(R) is a linear space over the scalars C and
that for f ∈ G(R)

1. F (ω) is defined for all ω ∈ R
2. F is a continuous function
3. limω→±∞ F (ω) = 0
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Examples
For a > 0, let f (x) = e−a|x| then

F (ω) =
1

2π

∫ ∞
−∞

e−a|x|e−iωxdx

=
1

2π

{∫ ∞
0

e−axe−iωxdx +

∫ 0

−∞
eaxe−iωxdx

}

=
1

2π

{
−
[

e−(a+iω)x

a + iω

]∞
0

+

[
e(a−iω)x

a− iω

]0

−∞

}

=
1

2π

{
1

a + iω
+

1
a− iω

}
=

a
π(a2 + ω2)

.
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Properties
Several properties of the Fourier transform are very helpful in
calculations.
First, note that by the linearity of integrals we have that if f ,g ∈ G(R)
and a,b ∈ C then

F[af+bg](ω) = aF[f ](ω) + bF[g](ω)

and af + bg ∈ G(R).
Secondly, if f is real-valued then

F (−ω) = F (ω) .
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Even and odd real-valued functions

Theorem
If f ∈ G(R) is an even real-valued function then F is even and
real-valued. If f is an odd real-valued function then F is odd and
purely imaginary.

Proof.
Suppose that f is even and real-valued then

F (ω) =
1

2π

∫ ∞
−∞

f (x)e−iωxdx

=
1

2π

∫ ∞
−∞

f (x) [cos(ωx)− i sin(ωx)] dx

=
1

2π

∫ ∞
−∞

f (x) cos(ωx)dx .

Hence, F is real-valued and even (the imaginary part has vanished
and both f and cos(ωx) are themselves even functions). The second
part follows similarly.
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Shift and scale properties

Theorem
Let f ∈ G(R) and a,b ∈ R with a 6= 0 and define

g(x) = f (ax + b)

then g ∈ G(R) and

F[g](ω) =
1
|a|e

iωb/aF[f ]

(ω
a

)
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Proof

Set y = ax + b so for a > 0 then

F[g](ω) =
1

2π

∫ ∞
−∞

f (y)e−iω( y−b
a ) dy

a

and for a < 0

F[g](ω) = − 1
2π

∫ ∞
−∞

f (y)e−iω( y−b
a ) dy

a
.

Hence,

F[g](ω) =
1
|a|e

iωb/a 1
2π

∫ ∞
−∞

f (y)e−iωy/ady =
1
|a|e

iωb/aF[f ]

(ω
a

)
.
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Special cases
Two special cases are worth highlighting.

1. Suppose that b = 0 so g(x) = f (ax) and so

F[g](ω) =
1
|a|F[f ]

(ω
a

)
.

2. Suppose that a = 1 so g(x) = f (x + b) and so

F[g](ω) = eiωbF[f ](ω) .
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Theorem
For f ∈ G(R) and c ∈ R then

F[eicx f (x)](ω) = F[f ](ω − c) .

Proof.

F[eicx f (x)](ω) =
1

2π

∫ ∞
−∞

eicx f (x)e−iωxdx

=
1

2π

∫ ∞
−∞

f (x)e−i(ω−c)xdx

= F[f ](ω − c) .
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Modulation property

Theorem
For f ∈ G(R) and c ∈ R then

F[f (x) cos(cx)](ω) =
F[f ](ω − c) + F[f ](ω + c)

2

F[f (x) sin(cx)](ω) =
F[f ](ω − c)−F[f ](ω + c)

2i
.

Proof.
We have that

F[f (x) cos(cx)](ω) = F[
f (x) eicx +e−icx

2

](ω)

=
1
2
F[f (x)eicx ](ω) +

1
2
F[f (x)e−icx ](ω)

=
F[f ](ω − c) + F[f ](ω + c)

2
.

Similarly, for F[f (x) sin(cx)](ω).
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Derivatives
There are further properties relating to the Fourier transform of
derivatives that we shall state here but omit further proofs.

Theorem
If f is such that both f , f ′ ∈ G(R) then

F[f ′](ω) = iωF[f ](ω) .
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Inverse Fourier transform
We have studied the Fourier transform. There is also an inverse
operation of recovering a function f given the function F (ω) = F[f ](ω)
which takes the form

f (x) =

∫ ∞
−∞
F[f ](ω)eiωxdω .

More precisely, and recalling Dirichlet’s theorem for Fourier series,
the following holds.

Theorem (Inverse Fourier transform)
If f ∈ G(R) then for every point x ∈ R where the one-sided derivatives
exist

f (x−) + f (x+)

2
= lim

M→∞

∫ M

−M
F[f ](ω)eiωxdω .
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Convolution
An important operation between two functions in signal processing
applications is convolution defined as follows.

Definition (Convolution)
If f and g are two functions R→ C then the convolution function,
written f ∗ g, is given by

(f ∗ g)(x) =

∫ ∞
−∞

f (x − y)g(y)dy

whenever the integral exists.
Exercise: show that the convolution operation is commutative, that
is f ∗ g = g ∗ f .
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Fourier transforms and convolutions
The importance of Fourier transform techniques in signal processing
rests, in part, on the following result that leads to much simpler
descriptions and mathematical formulae in the Fourier domain.

Theorem (Convolution theorem)
For f ,g ∈ G(R) then

F[f∗g](ω) = 2πF[f ](ω) · F[g](ω) .
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Proof

We have that

F[f∗g](ω) =
1

2π

∫ ∞
−∞

(f ∗ g)(x)e−iωxdx

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f (x − y)g(y)dy
)

e−iωxdx

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x − y)e−iω(x−y)g(y)e−iωy dxdy

=

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

f (x − y)e−iω(x−y)dx
)

g(y)e−iωy dy

= F[f ](ω)

∫ ∞
−∞

g(y)e−iωy dy

= 2πF[f ](ω) · F[g](ω) .
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Some signal processing applications
We first note two types of limitations on functions.

Definition (Time-limited)
A function f is time-limited if

f (x) = 0 for all |x | ≥ M

for some constant M.

Definition (Band-limited)
A function f ∈ G(R) is band-limited if

F[f ](ω) = 0 for all |ω| ≥ L

for some constant L.
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Let us first calculate the Fourier transform of

f (x) =

{
1 a ≤ x ≤ b
0 otherwise .

We have that

F (ω) =
1

2π

∫ ∞
−∞

f (x)e−iωxdx =
1

2π

∫ b

a
e−iωxdx .

So, for ω 6= 0,

F (ω) =

[
1

2π

(
e−iωx

−iω

)]b

a
=

e−iωa − e−iωb

2πiω
.

However, for ω = 0 we have that F (0) = 1
2π

∫ b
a dx = (b−a)

2π .
For the special case when a = −b with b > 0 then

F (ω) =

{
eiωb−e−iωb

2πiω = sin(ωb)
ωπ ω 6= 0

b
π ω = 0 .
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Low-pass filters
Suppose that f ∈ G(R) with Fourier transform F (ω) and choose a
positive constant L > 0. Define

FL(ω) =

{
F (ω) |ω| ≤ L
0 |ω| > L .

We wish to find fL such that F[fL] = FL, that is, a function band-limited
by L whose Fourier transform equals F in [−L,L].
Rewrite FL(ω) = F (ω)GL(ω) where

GL(ω) =

{
1 |ω| ≤ L
0 |ω| > L .

We will now use the convolution theorem to find fL.
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By the inverse transform theorem we have that for |x | 6= L

GL(x) =

∫ ∞
−∞

sinωL
ωπ

eiωxdω

But GL is clearly an even function so

GL(x) = GL(−x) =

∫ ∞
−∞

sinωL
ωπ

e−iωxdω

and if we interchange the variables x and ω we have

GL(ω) =
1

2π

∫ ∞
−∞

2 sin Lx
x

e−iωxdx .

This says that if gL(x) = 2 sin Lx
x then F[gL](ω) = GL(ω).
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In terms of convolutions we have

fL =
1

2π
(f ∗ gL)

fL(x) =
1

2π

∫ ∞
−∞

f (y)
2 sin(L(x − y))

x − y
dy

=
1
π

∫ ∞
−∞

f (y) sin(L(x − y))

x − y
dy

In particular, if f ∈ G(R) is such that F[f ](ω) = 0 for |ω| ≥ L then f
satisfies

f (x) = fL(x) =
1
π

∫ ∞
−∞

f (y) sin(L(x − y)))

x − y
dy .
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Shannon sampling theorem

Theorem (Shannon sampling theorem)
If f ∈ G(R) is band-limited by the constant L then

f (x) =
∞∑

n=−∞
f
(nπ

L

) sin(Lx − nπ)

Lx − nπ
.

Proof

Set F (ω) = F[f ](ω) and use the inverse Fourier transform theorem to
give

f (x) =

∫ ∞
−∞

F (ω)eiωxdω =

∫ L

−L
F (ω)eiωxdω .

So, taking x = nπ
L for n ∈ Z we get

f
(nπ

L

)
=

∫ L

−L
F (ω)eiωnπ/Ldω .
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Consider the complex Fourier series of F (ω) restricted to ω ∈ [−L,L]
given by

∞∑
n=−∞

cne−inπω/L

where the coefficients, cn, are

cn = 〈F ,e−inπω/L〉 =
1

2L

∫ L

−L
F (ω)einπω/Ldω =

1
2L

f
(nπ

L

)
Thus, since f is band-limited by L

F (ω) =

( ∞∑
n=−∞

cne−inπω/L

)
GL(ω) .

Hence,

F (ω) =
1

2L

∞∑
n=−∞

f
(nπ

L

)(
e−inπω/LGL(ω)

)
.
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But we have seen that GL(ω) = F[ 2 sin Lx
x ](ω) hence using the shift

formula
e−inπω/LGL(ω) = F[gL,n](ω)

where
gL,n(x) =

2 sin(Lx − nπ)

x − nπ
L

.

Putting this all together we have that

F (ω) =
1

2L

∞∑
n=−∞

f
(nπ

L

)
F[gL,n](ω)

and taking inverse transforms

f (x) =
1
2L

∞∑
n=−∞

f
(nπ

L

)
gL,n(x) =

∞∑
n=−∞

f
(nπ

L

) sin(Lx − nπ)

Lx − nπ
.
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Remarks on Shannon’s sampling theorem
I The theorem says that band-limited functions by a constant L

(that is, F[f ](ω) = 0 for |ω| > L) are completely determined by
their values at evenly spaced points a distance π

L apart.
I Moreover, we may recover the function exactly given only it’s

values at this sequence of points.
I It may be shown that the functions

sin(Lx − nπ)

Lx − nπ

for n ∈ Z form an orthonormal system with inner product

〈f ,g〉 =
L
π

∫ ∞
−∞

f (x)g(x)dx .
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Discrete Fourier Transforms
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We now shift attention from functions defined on intervals or on the
whole of R to sequences of values f [0], f [1], . . . , f [N − 1] and consider
how we might represent them.
An important result in this area of discrete transforms is that the
vectors {e0,e1, . . . ,eN−1} form an orthogonal system in the space CN

with the usual inner product where the nth component of ek is given by

(ek )n = e2πink/N n = 0,1,2, . . . ,N − 1 .

and k = 0,1,2, . . . ,N − 1.
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Applying the usual inner product

〈u, v〉 =
N−1∑
n=0

u[n]v [n]

we shall see that
||ek ||2 = 〈ek ,ek 〉 = N .

In fact, using {e0,e1, . . . ,eN−1} we can represent any
sequence f = (f [0], f [1], . . . , f [N − 1]) ∈ CN by

f =
1
N

N−1∑
k=0

〈f ,ek 〉ek .

Recall the generalized Fourier coefficients that we studied earlier.
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Orthogonality
We shall show orthogonality of the vectors ek by considering the N
distinct complex roots of the equation zN = 1. Put w = e2πi/N then
the N distinct roots zj (j = 0,1, . . . ,N − 1) of zN = 1 are

zj = e2πij/N = w j .

Now for an arbitrary integer n

1
N

N−1∑
k=0

e2πink/N =
1
N

N−1∑
k=0

wnk

=

{
1 if n is an integer multiple of N
1
N

1−wnN

1−wn = 0 otherwise .
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Thus,

〈ea,eb〉 =
N−1∑
k=0

e2πika/Ne−2πikb/N

=
N−1∑
k=0

e2πik(a−b)/N

=

{
N if (a− b) is a multiple of N
0 otherwise .

So, indeed, we have that

||ek ||2 = 〈ek ,ek 〉 = N .

83



Definition (Discrete Fourier Transform/DFT)
The sequence F [k ], k ∈ Z, defined by

F [k ] = 〈f ,ek 〉 =
N−1∑
n=0

f [n]e−2πink/N

is called the N-point Discrete Fourier Transform of f [n]

Thus, for n = 0,1,2, . . . ,N − 1, we have the inverse transform

f [n] =
1
N

N−1∑
k=0

F [k ]e2πink/N .
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Periodicity
Note that the sequence F [k ] has period N since

F [k + N] =
N−1∑
n=0

f [n]e−2πin(k+N)/N =
N−1∑
n=0

f [n]e−2πink/N = F [k ]

using the relation

e−2πin(k+N)/N = e−2πink/Ne−2πin = e−2πink/N .
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Properties of the DFT
The DFT satisfies a range of similar properties to those of the FT
relating to linearity, and shifts in either the n or k domain.
However, the convolution operation is defined a little differently.

Definition (Cyclical convolution)
The cyclical convolution of two periodic sequences f [n] and g[n] of
period N is defined as

(f ∗ g)[n] =
N−1∑
m=0

f [m]g[n −m] .

It can then be shown that the DFT of f ∗ g is the product F [k ]G[k ]
where F and G are the DFTs of f and g, respectively.
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Fast Fourier Transform algorithm
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Fast Fourier Transform
The Fast Fourier Transform is not a new transform but a particular
numerical algorithm for computing the DFT.
Since

F [k ] =
N−1∑
n=0

f [n]e−2πink/N

= f [0] + f [1]e−2πik/N + · · ·+ f [N − 1]e−2πik(N−1)/N

we can see that in order to compute F [k ] we need to do about 2N
(complex) additions and multiplications. To compute F [k ] in this way
for all k = 0,1,2, . . . ,N − 1 would require about 2N2 such operations.
In practice, where DFTs are computed for a large number of points N,
faster algorithms have been developed. Most approaches are based
on the factorization of N into prime factors and are known collectively
as Fast Fourier Transforms (FFT). In most popular methods N is
supposed to be a power of 2.
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Fast algorithms for the DFT
In 1965, James W. Cooley and John W. Tukey published a new and
substantially faster algorithm for computing the DFT than the
direct N2 approach.
They showed that when N is a composite number with N = P1P2 · Pm
then it is possible to reduce the cost of computing the DFT of a vector
of length N from

N2 = N(P1P2 · · ·Pm) to N((P1 − 1) + (P2 − 1) + · · ·+ (Pm − 1))

complex operations. In the case when P1 = P2 = · · · = Pm = 2 then
this reduces from N2 = 22m to 2m ·m = N log2 N.
For example, if N = 1024 = 210 then there is a roughly a 100 fold
improvement from N2 = 1,048,576 down to N log2 N = 10,240.
See: J.W. Cooley and J.W. Tukey. (1965) An algorithm for the machine
computation of complex Fourier series, Math. Comp, 19, 297–301.
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We shall not derive any of the details here but instead give an
impression of how the method operates.
First, the task of computing the DFT can be represented with
matrices as

F = Af

but where the N × N matrix, A, has a great deal of internal structure.
Cooley and Tukey exploited this structure in the case when N = 2m

(so m = log2 N) to rewrite A as a product of matrices each of which is
sparse

A = MmMm−1 · · ·M1B .

Since each of these matrices contains only a small number of
non-zero entries the effective number of complex operations is much
reduced compared to working with A itself.
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Wavelet Transforms
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Wavelets
Wavelets are a further method of representing functions that has
received much interest in applied fields over the last several decades.
The approach fits into the general scheme of expansion using
orthonormal functions. Here we expand functions f (x) in terms of a
doubly-infinite series

f (x) =
∞∑

j=−∞

∞∑
k=−∞

djk Ψjk (x)

where Ψjk (x) are the orthonormal functions.
The orthonormal functions arise from shifting and scaling operations
applied to a single function, Ψ(x), known as the mother wavelet.
The orthonormal functions are given for integers j and k by

Ψjk (x) = 2j/2Ψ(2jx − k)
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The Haar wavelet
A common example is the Haar wavelet whose mother function is
both localised and oscillatory defined by

Ψ(x) =


1 if 0 ≤ x < 1

2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

−1

1
Ψ(x)

−2 −1 1 2
x

0
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Wavelet dilations and translations
The Haar mother wavelet oscillates and has a width (or scale) of one.
The dyadic dilates of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . .

have widths
. . . ,22,21,1,2−1,2−2, . . .

respectively. Since the dilate Ψ(2jx) has width 2−j , its translates

Ψ(2jx − k) = Ψ(2j (x − k2−j )), k = 0,±1,±2, . . .

will cover the whole x-axis. The collection of coefficients djk are
termed the Discrete wavelet transform, or DWT, of the function f (x).
Just as with Fourier transforms there are fast implementations that
exploit structure.

94



Interpretation of djk

How should we intrepret the values djk ?
Since the Haar wavelet function Ψ(2jx − k) vanishes except when

0 ≤ 2jx − k < 1 , that is k2−j ≤ x < (k + 1)2−j

we see that djk gives us information about the behaviour of f near the
point x = k2−j measured on the scale of 2−j .
For example, the coefficients d−10,k , k = 0,±1,±2, . . . correspond to
variations of f that take place over intervals of length 210 = 1024
while the coefficients d10,k k = 0,±1,±2, . . . correspond to
fluctuations of f over intervals of length 2−10.
These observations help explain how the discrete wavelet transform
can be an exceptionally efficient scheme for representing functions.
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Comparison with Fourier analysis
Some of the practical motivations underlying the use of the
orthonormal functions such as Fourier analysis or wavelet analysis
are

I improved understanding,
I denoising signals, and
I data compression.

By representation of signals or functions in other forms these tasks
become easier or more effective.
The approach taken with Fourier analysis represents signals in terms
of trigonometric functions and as such is particularly suited to
situations where the signal is relatively smooth and is not of limited
extent.
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Properties of naturally arising data
Much naturally arising data has been found to be better represented
using wavelets which are better able to cope with discontinuities and
where the signal is of local extent. Generally, the efficiency of the
representation depends on the types of signal involved. If your signal
contains

I discontinuities (in both the signal and its derivatives), or
I varying frequency behaviour

then wavelets are likely to represent the signal more efficiently than is
possible with Fourier analysis.

97



Other classes of wavelets
I One of the most useful features of wavelets is the ease with

which a scientist can select the wavelet functions adapted for the
given problem.

I In fact, the Haar mother wavelet is perhaps the simplest of a very
wide class of possible wavelet systems used in practice today.

I Many applied fields have started to make use of wavelets
including astronomy, acoustics, signal and image processing,
neurophysiology, music, magnetic resonance imaging, speach
discrimination, optics, fractals, turbulence, earthquake prediction,
radar, human vision, etc.
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