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Some notation
RV random variable
IID independent, identically distributed

PGF probability generating function GX (z)
mgf moment generating function MX (t)

X ∼ U(0,1) RV X has the distribution U(0,1), etc
I(A) indicator function of the event A
P(A) probability that event A occurs, e.g. A = {X = n}
E(X ) expected value of RV X

E(X n) nth moment of RV X , for n = 1,2, . . .
FX (x) distribution function, FX (x) = P(X ≤ x)
fX (x) density of RV X given, when it exists, by F ′X (x)

100

Limits and inequalities
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Limits and inequalities
We are familiar with limits of real numbers. If xn = 1/n for n = 1,2, . . .
then limn→∞ xn = 0 whereas if xn = (−1)n no such limit exists.
Behaviour in the long-run or on average is an important characteristic
of everyday life.
In this section we will be concerned with these notions of limiting
behaviour when the real numbers xn are replaced by random
variables Xn. As we shall see there are several distinct notions of
convergence that can be considered.
To study these forms of convergence and the limiting theorems that
emerge we shall on the way also gather a potent collection of
concepts and tools for the probabilistic analysis of models and
systems.
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Probabilistic inequalities
To help assess how close RVs are to each other it is useful to have
methods that provide upper bounds on probabilities of the form

P(X > a)

for fixed constants a, and where, for example, X = |X1 − X2|.
We shall consider several such bounds and related inequalities.

� Markov’s inequality
� Chebychev’s inequality
� Lyapunov’s inequality
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Theorem (Markov’s inequality)
If E(X ) < ∞ then for any a > 0,

P(|X | ≥ a) ≤ E(|X |)
a

.

Proof.
We have that

I(|X | ≥ a) =

{
1 |X | ≥ a
0 otherwise .

Clearly,
|X | ≥ aI(|X | ≥ a)

hence
E(|X |) ≥ E(aI(|X | ≥ a)) = aP(|X | ≥ a)

which yields the result.
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Theorem (Chebychev’s inequality)
Let X be a RV with mean μ and finite variance σ2 then for all a > 0

P(|X − μ| ≥ a) ≤ σ2

a2 .

Proof.
Consider, for example, the case of a continuous RV X and
put Y = |X − μ| then

σ2 = E(Y 2) =

∫
y2fY (y)dy =

∫
0≤y<a

y2fY (y)dy +

∫
y≥a

y2fY (y)dy

so that
σ2 ≥ 0+ a2

P(Y ≥ a) .
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Theorem (Lyapunov’s inequality)
If r ≥ s > 0 then E(|X |r )1/r ≥ E(|X |s)1/s.

Proof.
Omitted.
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Moment generating function

Definition
The moment generating function (mgf) of a RV X is given by

MX (t) = E(etX )

and is defined for those values of t ∈ R for which this expectation
exists.
Using the power series ex = 1+ x + x2/2! + x3/3! + · · · we see that

MX (t) = E(etX ) = 1+ E(X )t + E(X 2)t2/2! + E(X 3)t3/3! + · · ·

and so the nth moment of X , E(X n), is given by the coefficient of tn/n!
in the power series expansion of the mgf MX (t).
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Elementary properties of the mgf
1. If X has mgf MX (t) then Y = aX + b has mgf MY (t) = ebtMX (at).
2. If X and Y are independent then X + Y has

mgf MX+Y (t) = MX (t)MY (t).

3. E(X n) = M(n)
X (0) where M(n)

X is the nth derivative of MX .
4. If X is a discrete RV taking values 0,1,2, . . . with probability

generating function GX (z) = E(zX ) then MX (t) = GX (et).

108

Fundamental properties of the mgf
1. Uniqueness: to each mgf there corresponds a unique distribution

function having that mgf.
In fact, if X and Y are RVs with the same mgf in some
region −a < t < a where a > 0 then X and Y have the same
distribution.

2. Continuity: if distribution functions Fn(x) converge pointwise to a
distribution function F (x), the corresponding mgf’s (where they
exist) converge to the mgf of F (x). Conversely, if a sequence of
mgf’s Mn(t) converge to M(t) which is continuous at t = 0,
then M(t) is a mgf, and the corresponding distribution
functions Fn(x) converge to the distribution function determined
by M(t).
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Example: exponential distribution
If X has an exponential distribution with parameter λ > 0
then fX (x) = λe−λx for 0 < x < ∞. Hence, for t < λ,

MX (t) =

∫ ∞

0
etxλe−λxdx =

∫ ∞

0
λe−(λ−t)xdx

=

[
− λ

(λ− t)
e−(λ−t)x

]∞
0

=
λ

λ− t
.

For t < λ
λ

(λ− t)
=

(
1− t

λ

)−1
= 1+

t
λ

+
t2

λ2 + · · ·

and hence E(X ) = 1/λ and E(X 2) = 2/λ2 so that

Var(X ) = E(X 2)− (E(X ))2 = 1/λ2 .
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Example: normal distribution
Consider a normal RV X ∼ N(μ, σ2) then fX (x) = 1

σ
√
2π

e−(x−μ)2/2σ2

so that

MX (t) =

∫ ∞

−∞
etx 1

σ
√
2π

e−(x−μ)2/2σ2
dx

=
1

σ
√
2π

∫ ∞

−∞
e−(−2txσ2+(x−μ)2)/2σ2

dx .

So, by completing the square,

MX (t) = eμt+σ2t2/2
{

1
σ
√
2π

∫ ∞

−∞
e−(x−(μ+tσ2))2/2σ2

}
dx

= eμt+σ2t2/2 .
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Example: uniform distribution
Consider a uniform RV X ∼ U(a, b). Then

fX (x) =

{
1

b−a a < x < b
0 otherwise .

Hence,

MX (t) =

∫ b

a

etx

b − a
dx

=

[
etx

(b − a)t

]b

a

=
ebt − eat

(b − a)t
.
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Theorem (Chernoff’s bound)
Suppose that X has mgf MX (t) and a ∈ R then for all t ≥ 0

P(X ≥ a) ≤ e−taMX (t) .

Proof.
Using Markov’s inequality, we have that

P(X ≥ a) = P(etX ≥ eta)

≤ E(etX )

eta

= e−taMX (t)

Note that the above bound holds for all t > 0 so we can select the
best such bound by choosing t to minimize e−taMX (t).
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Notions of convergence: Xn → X as n →∞
For a sequence of RVs (Xn)n≥1, we shall define several distinct
notions of convergence to some RV X as n →∞.

Definition (Convergence in distribution)
Xn

D−→ X if FXn(x) → FX (x) for all points x at which FX is continuous.

Definition (Convergence in probability)
Xn

P−→ X if P(|Xn − X | > ε) → 0 for all ε > 0.

Definition (Convergence almost surely)
Xn

a.s.−−→ X if P(Xn → X ) = 1.

Definition (Convergence in r th mean)
Xn

r−→ X if E(|Xn − X |r ) → 0.
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Convergence theorems

Theorem
If Xn

a.s.−−→ X then Xn
P−→ X.

Theorem
If Xn

P−→ X then Xn
D−→ X.

Theorem
If r > s ≥ 1 and Xn

r−→ X then Xn
s−→ X.

Theorem
If r ≥ 1 and Xn

r−→ X then Xn
P−→ X.
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Theorem
If Xn

a.s.−−→ X then Xn
P−→ X.

Proof.
Omitted.
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Theorem
If Xn

P−→ X then Xn
D−→ X.

Proof

We prove this theorem as follows. Fix, ε > 0 then

FXn(x) = P(Xn ≤ x ∩ X > x + ε) + P(Xn ≤ x ∩ X ≤ x + ε)

since X > x + ε and X ≤ x + ε form a partition. But if Xn ≤ x
and X > x + ε then |Xn − X | > ε
and {Xn ≤ x ∩ X ≤ x + ε} ⊂ {X ≤ x + ε}. Therefore,

FXn(x) ≤ P(|Xn − X | > ε) + FX (x + ε) .

Similarly,

FX (x − ε) = P(X ≤ x − ε ∩ Xn > x) + P(X ≤ x − ε ∩ Xn ≤ x)

≤ P(|Xn − X | > ε) + FXn(x) .
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The proof is completed by noting that together these inequalities
show that

FX (x − ε)− P(|Xn − X | > ε) ≤ FXn(x) ≤ P(|Xn − X | > ε) + FX (x + ε) .

But Xn
P−→ X implies that P(|Xn − X | > ε) → 0. So, as n →∞, FXn(x)

is squeezed between FX (x − ε) and FX (x + ε).
Hence, if FX is continuous at x , FXn(x) → FX (x) and so Xn

D−→ X .
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Theorem
If r > s ≥ 1 and Xn

r−→ X then Xn
s−→ X.

Proof.
Set Yn = |Xn − X | ≥ 0 then by Lyapunov’s inequality

E(Y r
n)1/r ≥ E(Y s

n )1/s .

Hence, if E(Y r
n) → 0 then E(Y s

n ) → 0.
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Theorem
If r ≥ 1 and Xn

r−→ X then Xn
P−→ X.

Proof.
By Markov’s inequality, for all ε > 0

P(|Xn − X | > ε) ≤ E(|Xn − X |)
ε

.

But Xn
r−→ X implies Xn

1−→ X and so the right hand side tends to zero
and as required Xn

P−→ X .
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Limit theorems
Given a sequence of RVs (Xn)n≥1, let

Sn = X1 + X2 + · · ·+ Xn and X n = Sn/n .

What happens to X n for large n?

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean μ (and finite

variance σ2) then X n
P−→ μ.

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean μ (and finite fourth
moment) then X n

a.s.−−→ μ.
Note that convergence to μ in the WLLN and SLLN actually means
convergence to a degenerate RV, X , with P(X = μ) = 1.
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WLLN

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean μ and finite variance σ2

then X n
P−→ μ.

Proof.
Recall that E(X n) = μ and Var(X n) = σ2/n. Hence, by Chebychev’s
inequality, for all ε > 0

P(|X n − μ| > ε) ≤ σ2/n
ε2

=
σ2

nε2

and so, letting n →∞,

P(|X n − μ| > ε) → 0

hence X n
P−→ μ as required.
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SLLN

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean μ (and finite fourth
moment) then X n

a.s.−−→ μ.

Proof.
Omitted.
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Applications: estimating probabilities
Suppose we wish to estimate the probability, p, that we succeed
when we play some game. For i = 1, . . . , n, let

Xi = I({i thgame is success}) .

So X n = m/n if we succeed m times in n attempts.
We have that μ = E(Xi) = P(Xi = 1) = p so then

m/n a.s.−−→ p

by the SLLN.
Thus we have shown the important result that the empirical estimate
of the probability of some event by its observed sample frequency
converges to the correct value as the number of samples grows.
This result forms the basis of all simulation methods.
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Applications: Shannon’s entropy

Theorem (Asymptotic Equipartition Property/AEP)
If Xn is a sequence of IID discrete RV with probability distribution
given by P(Xi = x) = p(x) for each x ∈ I then

−1
n
log2 p(X1, X2, . . . , Xn)

P−→ H(X )

where Shannon’s entropy is defined by

H(X ) = H(X1) = · · · = H(Xn) = −
∑
x∈I

p(x) log2 p(x)

and

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi)

is the joint probability distribution of the n IID RVs X1, X2, . . . , Xn.
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Proof.
Observe that p(Xi) is a RV taking the value p(x) with probabilty p(x)
and similarly p(X1, X2, . . . , Xn) is a RV taking a value p(x1, x2, . . . , xn)
with probability p(x1, x2, . . . , xn). Therefore,

−1
n
log2 p(X1, X2, . . . , Xn) = −1

n
log2

n∏
i=1

p(Xi)

= −1
n

n∑
i=1

log2 p(Xi)

=
1
n

n∑
i=1

(− log2 p(Xi))

P−→ E(− log2 p(Xi)) by WLLN

= −
n∑

x∈I

p(x) log2 p(x)

= H(X )
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AEP implications
By the AEP, for all ε > 0,

lim
n→∞P(| − 1

n
log2 p(X1, X2, . . . , Xn)− H(X )| ≤ ε) = 1

lim
n→∞P(H(X )− ε ≤ −1

n
log2 p(X1, X2, . . . , Xn) ≤ H(X ) + ε) = 1

lim
n→∞P(−n(H(X )− ε) ≥ log2 p(X1, X2, . . . , Xn) ≥ −n(H(X ) + ε)) = 1

lim
n→∞P(2−n(H(X)+ε) ≤ p(X1, X2, . . . , Xn) ≤ 2−n(H(X)−ε)) = 1

Thus, the sequences of outcomes (x1, x2, . . . , xn) for which

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε)

have a high probability and are refered to as typical sequences. An
efficient (optimal) coding is to assign short codewords to such
sequences leaving longer codewords for any non-typical sequence.
Such long codewords must arise only rarely in the limit.
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Central limit theorem

Theorem (Central limit theorem/CLT)
Let (Xn)n≥1 be a sequence of IID RVs with mean μ, variance σ2 and
whose moment generating function converges in some
interval −a < t < a with a > 0. Then

Zn =
X n − μ

σ/
√

n
D−→ Z ∼ N(0,1) .
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Proof of CLT
Set Yi = (Xi − μ)/σ then E(Yi) = 0 and E(Y 2

i ) = Var(Yi) = 1 so

MYi (t) = 1+
t2

2
+ o(t2)

where o(t2) refers to terms of higher order than t2 which will therefore
tend to 0 as t → 0. Also,

Zn =
X n − μ

σ/
√

n
=

1√
n

n∑
i=1

Yi .

Hence,

MZn(t) =

(
MYi

(
t√
n

))n

=

(
1+

t2

2n
+ o

(
t2

n

))n

→ et2/2 as n →∞ .

But et2/2 is the mgf of the N(0,1) distribution so, together with the
continuity property, the CLT now follows as required.
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CLT example
Suppose X1, X2, . . . , Xn are the IID RVs showing the n sample
outcomes of a 6-sided die with common distribution

P(Xi = j) = pj , j = 1,2, . . . ,6

Set Sn = X1 + X2 + · · ·+ Xn, the total score obtained, and consider
the two cases

� symmetric: (pj) = (1/6, 1/6,1/6, 1/6, 1/6, 1/6) so
that μ = E(Xi) = 3.5 and σ2 = Var(Xi) ≈ 2.9

� asymmetric: (pj) = (0.2,0.1,0.0,0.0,0.3,0.4) so
that μ = E(Xi) = 4.3 and σ2 = Var(Xi) ≈ 4.0

for varying sample sizes n = 5,10,15 and 20.
The CLT tells us that for large n, Sn is approximately distributed
as N(nμ, nσ2) where μ and σ2 are the mean and variance,
respectively, of Xi .
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CLT example: symmetric
10,000 replications

score

D
en
si
ty

0.00
0.02
0.04
0.06
0.08
0.10

0 20 40 60 80 100 120

n=5
0.00
0.02
0.04
0.06
0.08
0.10

n=10
0.00
0.02
0.04
0.06
0.08
0.10

n=15
0.00
0.02
0.04
0.06
0.08
0.10

n=20
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CLT example: asymmetric
10,000 replications

score

D
en
si
ty

0.00

0.05

0.10

0 20 40 60 80 100 120

n=5
0.00

0.05

0.10

n=10
0.00

0.05

0.10

n=15
0.00

0.05

0.10

n=20
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Confidence intervals I
One of the major statistical applications of the CLT is to the
construction of confidence intervals. The CLT shows that

Zn =
X n − μ

σ/
√

n

is asymptotically distributed as N(0,1). If, the true value of σ2 is
unknown we may estimate it by the sample variance given by

S2 =
1

n − 1

n∑
i=1

(Xi − X n)
2 .

For instance, it can be shown that E(S2) = σ2 and then

X n − μ

S/
√

n

is approximately distributed as N(0,1) for large n.
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Confidence intervals II
Define zα so that P(Z > zα) = α where Z ∼ N(0,1) and so

P(−zα/2 < Z < zα/2) = 1− α .

Hence,

P

(
−zα/2 <

X n − μ

S/
√

n
< zα/2

)
≈ 1− α

P

(
X n − zα/2

S√
n

< μ < X n + zα/2
S√
n

)
≈ 1− α .

The interval X n ± zα/2S/
√

n is thus an (approximate) 100(1− α)
percent confidence interval for the unknown parameter μ.

134

Confidence intervals: example
Consider a collection of n IID RVs, Xi , with common
distribution Xi ∼ Pois(λ). Hence,

P(Xi = j) =
λj e−λ

j!
j = 0,1, . . .

with mean E(Xi) = λ.
Then a 95% confidence interval for the (unknown) mean value λ is
given by

X n ± 1.96S/
√

n

where z0.025 = 1.96.
Alternatively, to obtain 99% confidence intervals replace 1.96
by z0.005 = 2.58.
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Confidence intervals: illustration with λ = 25

100 runs, n= 10

confidence interval

15 20 25 30 35

100 runs, n= 40

confidence interval

15 20 25 30 35
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Monte Carlo simulation
Suppose we wish to estimate the value of π. One way to proceed is
to perform the following experiment. Select a
point (X , Y ) ∈ [−1,1]× [−1,1], the square of side 2 and area 4 units,
with X and Y chosen independently and uniformly in [−1,1]. Now
consider those points within unit distance of the origin then

P((X , Y ) lies in unit circle) = P(X 2 + Y 2 ≤ 1) =
area of circle
area of square

=
π

4
.

Suppose we have access to a stream of random
variables Ui ∼ U(0,1) then 2Ui − 1 ∼ U(−1,1). Now
set Xi = 2U2i−1 − 1, Yi = 2U2i − 1 and Hi = I({X 2

i + Y 2
i ≤ 1}) so that

E(Hi) = P(X 2
i + Y 2

i ≤ 1) =
π

4
.

Then by the SLLN the proportion of points (Xi , Yi) falling within the
unit circle converges almost surely to π/4.
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Markov Chains
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Markov chains

Definition (Markov chain)
Suppose that (Xn) n ≥ 0 is a sequence of discrete random variables
taking values in some countable state space S. The sequence (Xn) is
a Markov chain if

P(Xn = xn|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1)

for all n ≥ 1 and for all x0, x1, . . . , xn ∈ S.
Since, S is countable we can always choose to label the possible
values of Xn by integers and say that when Xn = i the Markov chain is
in the “i th state at the nth step” or “visits i at time n”.
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Transition probabilities
The dynamics of the Markov chain are governed by the transition
probabilites P(Xn = j |Xn−1 = i).

Definition (time-homogeneous MC)
A Markov chain (Xn) is time-homogeneous if

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i)

for all n ≥ 1 and states i , j ∈ S.

� We shall assume that our MCs are time-homogeneous unless
explicitly stated otherwise.

140

Transition matrix

Definition (Transition matrix)
The transition matrix, P, of a MC (Xn) is given by P = (pij) where for
all i , j ∈ S

pij = P(Xn = j |Xn−1 = i) .

� Note that P is a stochastic matrix, that is, it has non-negative
entries (pij ≥ 0) and the row sums all equal one (

∑
j pij = 1).

� The transition matrix completely characterizes the dynamics of
the MC.

141

Mathematical Methods for CS Michaelmas 2009

7



Example
Suppose the states of the MC are S = {1,2,3} and that the transition
matrix is given by

P =

⎛
⎝1/3 1/3 1/3
1/2 0 1/2
2/3 0 1/3

⎞
⎠ .

� Thus, in state 1 we are equally likely to be in any of the three
states at the next step.

� In state 2, we can move with equal probabilities to 1 or 3 at the
next step.

� Finally in state 3, we either move to state 1 with probability 2/3 or
remain in state 3 at the next step.
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n-step transition matrix

Definition (n-step transition matrix)
The n-step transition matrix is P(n) = (p(n)

ij ) where

p(n)
ij = P(Xn = j |X0 = i) .

Thus P(1) = P and we also set P(0) = I, the identity matrix.
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Chapman-Kolmogorov equations
Theorem (Chapman-Kolmogorov)
For all states i , j and for all steps m, n

p(m+n)
ij =

∑
k

p(m)
ik p(n)

kj .

Hence, P(m+n) = P(m)P(n) and P(n) = Pn, the nth power of P.

Proof.

p(m+n)
ij = P(Xm+n = j |X0 = i) =

∑
k

P(Xm+n = j , Xm = k |X0 = i)

=
∑

k

P(Xm+n = j |Xm = k , X0 = i)P(Xm = k |X0 = i)

=
∑

k

P(Xm+n = j |Xm = k)P(Xm = k |X0 = i)

=
∑

k

p(n)
kj p(m)

ik
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The Chapman-Kolmorgorov equations tell us how the long-term
evolution of the MC depends on the short-term evolution specified by
the transition matrix.
If we let λ

(n)
i = P(Xn = i) be the elements of a row vector λ(n)

specifying the distribution of the MC at the nth time step then the
follow holds.

Lemma

λ(m+n) = λ(m)P(n)

and so,
λ(n) = λ(0)P(n)

where λ(0) is the initial distribution λ
(0)
i = P(X0 = i).

Proof.

λ
(m+n)
j = P(Xm+n = j) =

∑
i

P(Xm+n = j |Xm = i)P(Xm = i)

=
∑

i

λ
(m)
i p(n)

ij =
(
λ(m)P(n)

)
j
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Classification of states

Definition (Accessibility)
If, for some n ≥ 0, p(n)

ij > 0 then we say that state j is accessible from
state i , written i � j .
If i � j and j � i then we say that i and j communicate, written i � j .
Observe that the relation communicates� is

� reflexive
� symmetric
� transitive

and hence is an equivalence relation. The corresponding equivalence
classes partition the state space into subsets of states, called
communicating classes, that communicate with each other.
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Irreducibility
� A communicating class, C, that once entered can not be left is

called closed, that is pij = 0 for all i ∈ C, j �∈ C.
� A closed communicating class consisting of a single state is

called absorbing.
� When the state space forms a single communicating class, the

MC is called irreducible and is called reducible otherwise.
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Recurrence and transience
Write for n ≥ 1

f (n)
ij = P(X1 �= j , . . . , Xn−1 �= j , Xn = j |X0 = i)

so that f (n)
ij is the probability starting in state i that we visit state j for

the first time at time n. Also, let

fij =
∑
n≥1

f (n)
ij

the probability that we ever visit state j , starting in state i .

Definition
� If fii < 1 then state i is transient
� If fii = 1 then state i is recurrent.

148

Recurrence and transience, ctd
� Observe that if we return to a state i at some time n then the

evolution of the MC is independent of the path before time n.
Hence, the probability that we will return at least N times is f N

ii .
� Now, if i is recurrent f N

ii = 1 for all N and we are sure to return to
state i infinitely often.

� Conversely, if state i is transient then f N
ii → 0 as N →∞ and so

there is zero probability of returning infinitely often.
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Theorem
� i is transient ⇔∑

n≥1 p(n)
ii converges

� i is recurrent ⇔∑
n≥1 p(n)

ii diverges

If i and j belong to the same communicating class then they are
either both recurrent or both transient — the solidarity property.

Proof

First, define generating functions

Pii(z) =
∞∑

n=0

p(n)
ii zn and Fii(z) =

∞∑
n=0

f (n)
ii zn

where we take p(0)
ii = 1 and f (0)

ii = 0.
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By examining the first time, r , that we return to i , we have
for m = 1,2, . . . that

p(m)
ii =

m∑
r=1

f (r)
ii p(m−r)

ii .

Now multiply by zm and summing over m we get

Pii(z) = 1+
∞∑

m=1

zmp(m)
ii

= 1+
∞∑

m=1

zm
m∑

r=1

f (r)
ii p(m−r)

ii

= 1+
∞∑

r=1

f (r)
ii zr

∞∑
m=r

p(m−r)
ii zm−r

= 1+ Fii(z)Pii(z)
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Thus, Pii(z) = 1/(1− Fii(z)). Now let z ↗ 1 then Fii(z) → Fii(1) = fii
and Pii(z) →∑

n p(n)
ii .

If i is transient then fii < 1 so
∑

n p(n)
ii converges. Conversely, if i is

recurrent then fii = 1 and
∑

n p(n)
ii diverges.

Furthermore, if i and j are in the same class then there exist m and n
so that p(m)

ij > 0 and p(n)
ji > 0. Now, for all r ≥ 0

p(m+r+n)
ii ≥ p(m)

ij p(r)
jj p(n)

ji

so that
∑

r p(r)
jj and

∑
k p(k)

ii diverge or converge together.
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Mean recurrence time
First, let

Tj = min{n ≥ 1 : Xn = j}
be the time of the first visit to state j and set Tj = ∞ if no such visit
ever occurs.
Thus, P(Ti = ∞|X0 = i) > 0 if and only if i is transient in which
case E(Ti |X0 = i) =∞.

Definition (Mean recurrence time)
The mean recurrent time, μi , of a state i is defined as

μi = E(Ti |X0 = i) =

{∑
n nf (n)

ii if i is recurrent
∞ if i is transient .

� Note that μi may still be infinite when i is recurrent.
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Positive and null recurrence

Definition
A recurrent state i is

� positive recurrent if μi < ∞ and
� null recurrent if μi = ∞.

154

Example: simple random walk
Recall the simple random walk where Xn =

∑n
i=1 Yi where (Yn) are

IID RVs with P(Yi = 1) = p = 1− P(Yi = −1). Thus Xn is the position
after n steps where we take unit steps up or down with probabilities p
and 1− p, respectively.
It is clear that return to the origin is only possible after an even
number of steps. Thus the sequence (p(n)

00 ) alternates between zero
and a positive value.
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Periodicity
Let di be the greatest common divisor of {n : p(n)

ii > 0}.
Definition

� If di = 1 then i is aperiodic.
� If di > 1 then i is periodic with period di .

� It may be shown that the period is a class property, that is,
if i , j ∈ C then di = dj .

We will now concentrate on irreducible and aperiodic Markov chains.

156

Stationary distributions

Definition
The vector π = (πj ; j ∈ S) is a stationary distribution for the MC with
transition matrix P if
1. πj ≥ 0 for all j ∈ S and

∑
j∈S πj = 1

2. π = πP, or equivalently, πj =
∑

i∈S πi pij .

Such a distribution is stationary in the sense
that πP2 = (πP)P = πP = π and for all n ≥ 0

πPn = π .

Thus if X0 has distribution π then Xn has distribution π for all n.
Moreover, π is the limiting distribution of Xn as n →∞.
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Markov’s example
Markov was lead to the notion of a Markov chain by study the
patterns of vowels and consonants in text. In his original example, he
found a transition matrix for the states {vowel, consonant) as

P =

(
0.128 0.872
0.663 0.337

)
.

Taking successive powers of P we find

P2 =

„
0.595 0.405
0.308 0.692

«
P3 =

„
0.345 0.655
0.498 0.502

«
P4 =

„
0.478 0.522
0.397 0.603

«
.

As n →∞,

Pn →
(
0.432 0.568
0.432 0.568

)
.

Check that π = (0.432,0.568) is a stationary distribution, that
is πP = π.
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Limiting behaviour as n →∞
Theorem (Erdös-Feller-Pollard)
For all states i and j in an irreducible, aperiodic MC,

1. if the chain is transient, p(n)
ij → 0

2. if the chain is recurrent, p(n)
ij → πj , where

2.1 (null recurrent) either, every πj = 0
2.2 (positive recurrent) or, every πj > 0,

P
j πj = 1 and π is the unique

probability distribution solving πP = π.

3. In case (2), let Ti be the time to return to i then μi = E(Ti) = 1/πi
with μi = ∞ if πi = 0.

Proof.
Omitted.
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Remarks
� The limiting distribution, π, is seen to be a stationary one.

Suppose the current distribution is given by π and consider the
evolution of the MC for a further period of T steps. Since π is
stationary, the probability of being in any state i remains πi , so
we will make around Tπi visits to i . Consequently, the mean time
between visits to i would be T/(Tπi) = 1/πi .

� Using λ
(n)
j = P(Xn = j) and since λ(n) = λ(0)Pn

1. for transient or null recurrent states λ(n) → 0, that is, P(Xn = j) → 0
for all states j

2. for a positive recurrent state, p(n) → π > 0, that
is, P(Xn = j) → πj > 0 for all j , where π is the unique probability
vector solving πP = π.

� Note the distinction between a transient and a null recurrent
chain is that in a transient chain we might never make a return
visit to some state i and there is zero probability that we will
return infinitely often. However, in a null recurrent chain we are
sure to make infinitely many return visits but the mean time
between consecutive visits is infinite.
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Time-reversibility
Suppose now that (Xn : −∞ < n < ∞) is an irreducible, postive
recurrent MC with transition matrix P and unique stationary
distribution π. Suppose also that Xn has the distribution π for
all −∞ < n < ∞. Now define the reversed chain by

Yn = X−n for −∞ < n < ∞

Then (Yn) is also a MC and where Yn has the distribution π.

Definition (Reversibility)
A MC (Xn) is reversible if the transition matrices of (Xn) and (Yn) are
equal.

161

Theorem
A MC (Xn) is reversible if and only if

πi pij = πj pji for all i , j ∈ S .

Proof.
Consider the transition probabilities qij ofthe MC (Yn) then

qij = P(Yn+1 = j |Yn = i)
= P(X−n−1 = j |X−n = i)
= P(Xm = i |Xm−1 = j)P(Xm−1 = j)/P(Xm = i) where m = −n
= pjiπj/πi .

Hence, pij = qij if and only if πi pij = πj pji .
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Theorem
For an irreducible chain, if there exists a vector π such that
1. 0 ≤ πi ≤ 1 and

∑
i π = 1

2. πi pij = πj pji for all i , j ∈ S
then the chain is reversible and positive recurrent, with stationary
distribution π.

Proof.
Suppose that π satisfies the conditions of the theorem then∑

i

πi pij =
∑

i

πj pji = πj

∑
i

pji = πj

and so π = πP and the distribution is stationary.
The conditions πi pij = πj pji for all i , j ∈ S are known as the local
balance conditions.
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Ehrenfest model
Suppose we have two containers A and B containing a total of m
balls. At each time step a ball is chosen uniformly at random and
switched between containers. Let Xn be the number of balls in
container A after n units of time. Thus, (Xn) is a MC with transition
matrix given by

pi,i+1 = 1− i
m

, pi,i−1 =
i
m

.

Instead of solving the equations π = πP we look for solutions to

πi pij = πj pji

which yields πi =
(m

i

)
( 12 )

m, a binomial distribution with parameters m
and 1

2 .

164

Random walk on a graph
Consider a graph G consisting of a countable collection of
vertices i ∈ N and a finite collection of edges (i , j) ∈ E joining
(unordered) pairs of vertices. Assume also that G is connected.
A natural way to construct a MC on G uses a random walk through
the vertices. Let vi be the number of edges incident at vertex i . The
random walk then moves from vertex i by selecting one of the vi
edges with equal probability 1/vi . So the transition matrix, P, is

pij =

{
1
vi

if (i , j) is an edge
0 otherwise .

165
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Since G is connected, P is irreducible. The local balance conditions
for (i , j) ∈ E are

πi pij = πj pji

πi
1
vi

= πj
1
vj

πi

πj
=

vi

vj
.

Hence,
πi ∝ vi

and the normalization condition
∑

i∈N πi = 1 gives

πi =
vi∑

j∈N vj

and P is reversible.
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Ergodic results
Ergodic results tell us about the limiting behaviour of averages taken
over time. In the case of Markov Chains we shall consider the
long-run proportion of time spent in a given state.
Let Vi(n) be the number of visits to i before time n then

Vi(n) =
n−1∑
k=0

I({Xk = i}) .

Thus, Vi(n)/n is the proportion of time spent in state i before time n.

Theorem (Ergodic theorem)
Let (Xn) be a MC with irreducible transition matrix P then

P

(
Vi(n)

n
→ 1

μi
as n →∞

)
= 1

where μi = E(Ti |X0 = i) is the expected return time to state i.
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Proof

If P is transient then the total number of visits, Vi , to i is finite with
probability one, so

Vi(n)

n
≤ Vi

n
→ 0 =

1
μi

n →∞ .

Alternatively, if P is recurrent let Y (r)
i be the r th duration between

visits to any given state i . Then Y (1)
i , Y (2)

i , . . . are non-negative IID
RVs with E(Y (r)

i ) = μi .
But

Y (1)
i + · · ·+ Y (Vi (n)−1)

i ≤ n − 1

since the time of the last visit to i before time n occurs no later than
time n − 1 and

Y (1)
i + · · ·+ Y (Vi (n))

i ≥ n

since the time of the first visit to i after time n − 1 occurs no earlier
than time n.
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Hence,

Y (1)
i + · · ·+ Y (Vi (n)−1)

i
Vi(n)

≤ n
Vi(n)

≤ Y (1)
i + · · ·+ Y (Vi (n))

i
Vi(n)

.

However, by the SLLN,

P

(
Y (1)

i + · · ·+ Y (n)
i

n
→ μi as n →∞

)
= 1

and for P recurrent we know that P(Vi(n) →∞ as n →∞) = 1.
So,

P

(
n

Vi(n)
→ μi as n →∞

)
= 1

which implies

P

(
Vi(n)

n
→ 1

μi
as n →∞

)
= 1 .
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Example: random surfing on web graphs
Consider a web graph, G = (V , E), with vertices given by a finite
collection of web pages i ∈ V and (directed) edges given by (i , j)
whenever there is a hyperlink from page i to page j .
Random walks through the web graph have received much attention
in the last few years.
Consider the following model, let Xn ∈ V be the location (that is, web
page visited) by the surfer at time n and suppose we choose Xn+1
uniformly from the, L(i), outgoing links from i , in the case
where L(i) > 0 and uniformly among all pages in V if L(i) = 0 (the
dangling page case).

170

Hence, the transition matrix, P̂ij , say, is given by

p̂ij =

⎧⎪⎨
⎪⎩

1
L(i) if (i , j) ∈ E
1
|V | if L(i) = 0
0 otherwise

where |V | is the number of pages (that is, vertices) in the web graph.
A potential problem remains in that P̂ may not be irreducible or may
be periodic.
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We make a further adjustment to ensure irreducibility and aperiodicity
as follows.
For 0 ≤ α ≤ 1 set

pij = (1− α)p̂ij +
α

|V | .

We can interpret this as an “easily bored web surfer” model and see
that the transitions take the form of a mixture of two distributions.
With probability 1− α we follow the randomly chosen outgoing link
(unless the page is dangling in which case we move to a randomly
chosen page) while with probability α we jump to a random page
selected uniformly from the entire set of pages V .
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PageRank
Brin et al (1999) used this approach to define PageRank through the
limiting distribution of this Markov Chain, that is πi where the vector π
satisfies

π = πP

They report typical values for α of between 0.1 and 0.2.
The ergodic theorem now tells us that the random surfer in this model
spends a proportion πi of the time visiting page i — a notion in some
sense of the importance of page i .
Thus, two pages i and j can be ranked according to the total order
defined by

i ≥ j if and only if πi ≥ πj .

See, “The PageRank Citation Ranking: Bring Order to the Web” Sergey Brin,
Lawrence Page, Rajeev Motwani and Terry Winograd (1999) Technical
Report, Computer Science Department, Stanford University.
http://dbpubs.stanford.edu:8090/pub/1999-66
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Computing PageRank: the power method
We seek a solution to the system of equations

π = πP

that is, we are looking for an eigenvector of P (with corresponding
eigenvalue of one). Google’s computation of PageRank is one of the
world’s largest matrix computations.
The power method starts from an initial distribution π(0),
updating π(k−1) by the iteration

π(k) = π(k−1)P = · · · = π(0)Pk

Advanced methods from linear algebra can be used to speed up
convergence of the power method and there has been much study of
related MCs, to include web browser back buttons and many other
properties and alternative notions of the “importance” of a web page.
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Hidden Markov Models
An extension of Markov Chains is provided by Hidden Markov Models
(HMM) where a statistical model of observed data is constructed from
an underlying but usually hidden Markov Chain.
Such models have proved very popular in a wide variety of fields
including

� speech and optical character recognition
� natural language processing
� bioinformatics and genomics.

We shall not consider these applications in any detail but simply
introduce the basic ideas and questions that Hidden Markov Models
address.
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A Markov model with hidden states
Suppose we have a MC with transition matrix P but that the states i of
the chain are not directly observable. Instead, we suppose that on
visiting any state i at time n there is a randomly chosen output value
or token, Yn, that is observable.
The probability of observing the output token t when in state i is given
by some distribution bi , depending on the state i that is visited.
Thus,

P(Yn = t |Xn = i) = (bi)t

where (bi)t is the t th component of the distribution bi .
For an excellent introduction to HMM, see “A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition” Lawence R.
Rabiner. Proceedings of the IEEE, Vol 77, No 2, February 1988.
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Three central questions
There are many variants of this basic setup but three central
problems are usually addressed.

Definition (Evaluation problem)
Given a sequence y1, y2, . . . , yn of observed output tokens and the
parameters of the HMM (namely, P, bi and the distribution for the
initial state X0) how do we compute

P(Y1 = y1, Y2 = y2, . . . , Yn = yn|HMM parameters)

that is, the probability of the observed sequence given the model?
Such problems are solved in practice by the forward algorithm.
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A second problem that may occur in an application is the decoding
problem.

Definition (Decoding problem)
Given an observed sequence of output tokens y1, y2, . . . , yn and the
full description of the HMM parameters, how do we find the best fitting
corresponding sequence of (hidden) states i1, i2, . . . , in of the MC?
Such problems are solved in practice by a dynamic programming
approach called the Viterbi algorithm.
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The third important problem is the learning problem.

Definition (Learning problem)
Given an observed sequence of output tokens y1, y2, . . . , yn, how do
we adjust the parameters of the HMM to maximize

P(Y1 = y1, Y2 = y2, . . . , Yn = yn|HMM parameters)

The observed sequence used to adjust the model parameters is
called a training sequence. Learning problems are crucial in most
applications since they allow us to create the “best” models in real
observed processes.
Iterative procedures, known as the Baum-Welch method, are used to
solve this problem in practice.

179

Applications of Markov Chains
These and other applications of Markov Chains are important topics
in a variety of Part II courses, including

� Artificial Intelligence II
� Bioinformatics
� Computer Systems Modelling
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§2: Limits and inequalities

1. Suppose that X is a random variable with the U(−1, 1) distribution. Find the exact value
of P(|X| ≥ a) for each a > 0 and compare it to the upper bounds obtained from the
Markov and Chebychev inequalities.

2. Let X be the random variable giving the number of heads obtained in a sequence of n fair
coin flips. Compare the upper bounds on P(X ≥ 3n/4) obtained from the Markov and
Chebychev inequalities.

3. Let Ai (i = 1, 2, . . . , n) be a collection of random events and set N =
∑n

i=1 I(Ai). By
considering Markov’s inequality applied to P(N ≥ 1) show Boole’s inequality, namely,

P (∪ni=1Ai) ≤
n∑
i=1

P(Ai) .

4. Let h : R→ [0,∞) be a non-negative function. Show that

P(h(X) ≥ a) ≤ E(h(X))
a

for all a > 0 .

By making suitable choices of h(x), show that we may obtain the Markov and Chebychev
inequalities as special cases.

5. Show the following properties of the moment generating function.

(a) If X has mgf MX(t) then Y = aX + b has mgf MY (t) = ebtMX(at).
(b) If X and Y are independent then X + Y has mgf MX+Y (t) = MX(t)MY (t).

(c) E(Xn) = M
(n)
X (0) where M (n)

X is the nth derivative of MX .
(d) If X is a discrete random variable taking values 0, 1, 2, . . . with probability generating

function GX(z) = E(zX) then MX(t) = GX(et).

6. Let X be a random variable with moment generating function MX(t) which you may
assume exists for any value of t. Show that for any a > 0

P(X ≤ a) ≤ e−taMX(t) for all t < 0 .

7. Show that, if Xn
D−→ X, where X is a degenerate random variable (that is, P(X = µ) = 1

for some constant µ) then Xn
P−→ X.

8. Suppose that you estimate your monthly phone bill by rounding all amounts to the nearest
pound. If all rounding errors are independent and distributed as U(−0.5, 0.5), estimate
the probability that the total error exceeds one pound when your bill has 12 items. How
does this procedure suggest an approximate method for constructing Normal random
variables?
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§3: Markov chains

1. Suppose that (Xn) is a Markov chain with n-step transition matrix, P (n), and let λ(n)
i =

P(Xn = i) be the elements of a row vector λ(n) (n = 0, 1, 2, . . .). Show that

(a) P (m+n) = P (m)P (n) for m,n = 0, 1, 2, . . .
(b) λ(n) = λ(0)P (n) for n = 0, 1, 2, . . ..

2. Suppose that (Xn) is a Markov chain with transition matrix P . Define the relations
“state j is accessible from state i” and “states i and j communicate”. Show that the
second relation is an equivalence relation and define the communicating classes as the
equivalence classes under this relation. What is meant by the terms closed class, absorbing
class and irreducible?

3. Show that
Pij(z) = δij + Fij(z)Pjj(z)

where

Pij(z) =
∞∑
n=0

p
(n)
ij z

n, Fij(z) =
∞∑
n=0

f
(n)
ij zn

and δij = 1 if i = j and 0 otherwise. [You should assume that p(n)
ij and f (n)

ij are as defined

in lectures with p
(0)
ij = δij and f

(0)
ij = 0 for all states i, j.]

4. Suppose that (Xn) is a finite state Markov chain and that for some state i and for all
states j

lim
n→∞

p
(n)
ij = πj

for some collection of numbers (πj). Show that π = (πj) is a stationary distribution.

5. Consider the Markov chain with transition matrix

P =
(

0.128 0.872
0.663 0.337

)
for Markov’s example of a chain on the two states {vowel, consonant} for consecutive
letters in a passage of text. Find the stationary distribution for this Markov chain. What
are the mean recurrence times for the two states?

6. Define what is meant by saying that (Xn) is a reversible Markov chain and write down the
local balance conditions. Show that if a vector π is a distribution over the states of the
Markov chain that satisfies the local balance conditions then it is a stationary distribution.

7. Consider the Erhenfest model for m balls moving between two containers with transition
matrix

pi,i+1 = 1− i

m
, pi,i−1 =

i

m

where i (0 ≤ i ≤ m) is the number of balls in a given container. Show that the Markov
chain is irreducible and periodic with period 2. Derive the stationary distribution.
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8. Consider a random walk, (Xn), on the states i = 0, 1, 2, . . . with transition matrix

pi,i−1 = p i = 1, 2, . . .
pi,i+1 = 1− p i = 0, 1, . . .
p0,0 = p

where 0 < p < 1. Show that the Markov chain is irreducible and aperiodic. Find
a condition on p to make the Markov chain positive recurrent and find the stationary
distribution in this case.

9. Describe PageRank as a Markov chain model for the motion between nodes in a graph.
Explain the main mathematical results that underpin PageRank’s connection to a notion
of web page “importance”.

10. 2007 Paper 4 Question 5
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