
Interactive Formal Verification

Course Handouts

Lawrence C Paulson

January 12, 2010

Interactive Formal Verification consists of 12 lectures and 4 practical
sessions, each held on Wednesday mornings in SW02. The dates of the
practical sessions for 2010 are 27 January, 10 February, 24 February, 10
March.

The handouts for the first two practical sessions will not be assessed in
any way. Both handouts contain much more work than can be completed
in an hour. You are not required to do all (indeed any) of the problems on
these handouts, but I hope that you will do as many of them as you find
beneficial for learning. Many more exercises can be found on the Internet,
at http://isabelle.in.tum.de/exercises/. You may use the terminals in SW02
whenever the room has not been booked for another course.

The handouts for the last two practical sessions will be assessed to de-
termine your final mark. For each assessed exercise, please complete the
indicated tasks and write a brief document explaining your work. You may
prepare these documents using Isabelle’s theory presentation facility, but
this is not required. A very simple way to print a theory file legibly is to
use the Proof General command Isabelle > Commands > Display draft.
You can combine the resulting output with a document produced using
your favourite word processing package. A clear write-up describing ele-
gant, clearly structured proofs of all tasks will receive maximum credit.

The first assessed exercise will be due on Friday, 12 March 2010 and the
second assessed exercise will be due on Tuesday, 20 April 2010, both at 12
noon.

Please deliver a printed copy of each completed exercise to student ad-
ministration by that deadline, and also send the corresponding theory file
to me using the address lp15@cam.ac.uk.

1

http://isabelle.in.tum.de/exercises/
lp15@cam.ac.uk

1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

2

2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions. De-
termine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between sum and Sum? Prove the following equation,
suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.

3

3 Assessed Exercise I: Greatest Common Divisors

The greatest common divisor of two natural numbers can be computed by
a binary version of Euclid’s algorithm:

• The GCD of x and 0 is x.

• If the GCD of x and y is z, then the GCD of 2x and 2y is 2z.

• The GCD of 2x and y is the same as that of x and y if y is odd.

• The GCD of x and y is the same as that of x− y and y if y ≤ x.

• The GCD of x and y is the same as the GCD of y and x.

Note that frequently more than one of these cases is applicable, so it is not
immediately obvious that they express a function.

Task 1 Define inductively the set GCD such that (x,y,g) ∈ GCD means g

is the greatest common divisor of x und y, as specified by the description
above.

Task 2 Show that the GCD of x und y is really a divisor of both numbers:

lemma GCD_divides: "(x,y,g) ∈ GCD =⇒ g dvd x ∧ g dvd y"

Task 3 Show that the GCD of x und y is really the greatest common divisor
of both numbers, with respect to the divides relation. Hint: consider using
the predicate coprime, which belongs to the theory GCD. This theory will be
present in your session because it is an ancestor of theory Prime.

lemma GCD_greatest_dvd:
"(x,y,g) ∈ GCD =⇒ d dvd x =⇒ d dvd y =⇒ d dvd g"

Task 4 Show that, despite its apparent non-determinism, the relation GCD

is deterministic and therefore defines a function:

lemma GCD_unique:
"(x,y,g) ∈ GCD =⇒ (x,y,g’) ∈ GCD =⇒ g = g’"

Hint: first, prove a lemma establishing a connection between the relation GCD

and the function gcd, which belongs to the theory GCD. This theory provides
many lemmas that can help you complete this exercise.

4

4 Assessed Exercise II: Semantics

This assessed exercise continues the proofs concerning operational semantics
that were outlined in the lectures. Please deliver the completed exercise and
theory file by the appropriate deadline.

4.1 Syntax and Semantics of Commands

As in the lectures, the theory begins by specifying the types of locations,
values (here we use the natural numbers), states, and finally arithmetic and
boolean expressions.

typedecl loc
— an unspecified (arbitrary) type of locations (adresses/names) for variables

types
val = nat — or anything else, nat used in examples
state = "loc ⇒ val"
aexp = "state ⇒ val"
bexp = "state ⇒ bool"
— arithmetic and boolean expressions are not modelled explicitly here,
— they are just functions on states

The commands include SKIP, which does nothing, assignments, sequenc-
ing, conditionals and repetition. Note: our use of the semicolon character
for sequencing could cause syntactic ambiguities if you attempt to use the
semicolons to separate the preconditions of theorems. You can instead ex-
press properties using the symbol =⇒.

datatype
com = SKIP

| Assign loc aexp (infixr ":==" 80)
| Semi com com (infixr ";" 70)
| Cond bexp com com ("IF _ THEN _ ELSE _" [0, 90, 90] 91)
| While bexp com ("WHILE _ DO _" [0, 91] 90)

The big-step execution relation evalc is defined inductively, as in the lec-
tures.

inductive
evalc :: "[com,state,state] ⇒ bool" ("〈_, _〉/ _" [0,0,60] 60)

where
Skip: "〈SKIP,s〉 s"

| Assign: "〈x :== a,s〉 s(x := a s)"

| Semi: "〈c0,s〉 s’’ =⇒ 〈c1,s’’〉 s’ =⇒ 〈c0; c1, s〉 s’"

5

| IfTrue: "b s =⇒ 〈c0,s〉 s’ =⇒ 〈IF b THEN c0 ELSE c1, s〉 s’"
| IfFalse: "¬b s =⇒ 〈c1,s〉 s’ =⇒ 〈IF b THEN c0 ELSE c1, s〉 s’"

| WhileFalse: "¬b s =⇒ 〈WHILE b DO c,s〉 s"
| WhileTrue: "b s =⇒ 〈c,s〉 s’’ =⇒ 〈WHILE b DO c, s’’〉 s’

=⇒ 〈WHILE b DO c, s〉 s’"

Next come commands that set up Isabelle’s automation. The rules that
make up the inductive definition can be used as introduction rules, and rule
inversion from the definition supplies us with elimination rules. This again
is very similar to the material in the lectures.

lemmas evalc.intros [intro] — use those rules in automatic proofs

inductive cases skipE [elim!]: "〈SKIP,s〉 s’"
inductive cases semiE [elim!]: "〈c0; c1, s〉 s’"
inductive cases assignE [elim!]: "〈x :== a,s〉 s’"
inductive cases ifE [elim!]: "〈IF b THEN c0 ELSE c1, s〉 s’"
inductive cases whileE [elim]: "〈WHILE b DO c,s〉 s’"

4.2 Equivalence of commands

Two commands are equivalent if they allow the same transitions.

definition
equiv_c :: "com ⇒ com ⇒ bool" (infixr "∼" 60)

where
"(c ∼ c’) = (∀ s s’. (〈c, s〉 s’) = (〈c’, s〉 s’))"

The following rule of inference, made available to Isabelle’s automatic meth-
ods as an introduction rule, allows us to prove semantic equivalence state-
ments. This again was covered in the lectures.

lemma equivI [intro!]:
"(

∧
s s’. 〈c, s〉 s’ = 〈c’, s〉 s’) =⇒ c ∼ c’"

Task 1 Prove the following theorem.

lemma equiv_if3:
"c1 ∼ c2 =⇒
(IF b1 THEN c1 ELSE IF b2 THEN c2 ELSE c3) ∼
(IF b2 THEN c2 ELSE IF b1 THEN c1 ELSE c3)"

Task 2 Prove the following theorem, which establishes that semantic equiva-
lence is a congruence relation with respect to While. Unlike analogous proofs
for other constructors, this proof requires a lemma proved by induction.

6

lemma equiv_while:
"c ∼ c’ =⇒ (WHILE b DO c) ∼ (WHILE b DO c’)"

Task 3 Prove the following theorem, which expresses that the Boolean ex-
pression guarding the loop holds at the start of the loop body.

lemma equiv_while_if:
"(WHILE b1 DO IF b2 THEN c1 ELSE c2) ∼
(WHILE b1 DO IF (λs. b1 s & b2 s) THEN c1 ELSE c2)"

4.3 A Command Preserves a Boolean Expression

The following two properties allow a command c to be moved out of a
conditional command. One of them can be proved as shown. The other one
can be proved subject to the precondition preserves c b, which expresses
that the command c preserves the value of the Boolean expression b.

Task 4 Formalise the concept preserves c b in Isabelle, and prove both
properties in the appropriate form.

lemma equiv_if1:
"(IF b THEN (c; c1) ELSE (c; c2)) ∼ (c; (IF b THEN c1 ELSE c2))"

lemma equiv_if2:
"(IF b THEN (c1; c) ELSE (c2; c)) ∼ ((IF b THEN c1 ELSE c2); c)"

7

	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Greatest Common Divisors
	Assessed Exercise II: Semantics
	Syntax and Semantics of Commands
	Equivalence of commands
	A Command Preserves a Boolean Expression

