Interactive Formal Verification

Lawrence C Paulson
Computer Laboratory
University of Cambridge

This lecture course introduces interactive formal proof using Isabelle. The lecture notes consist of copies of the slides, some of which have brief remarks attached. Isabelle documentation can be found on the Internet at the URL http://www.cl.cam.ac.uk/research/hvg/lsabelle/ documentation.html. The most important single manual is the Tutorial on Isabelle/HOL. Reading the Tutorial is an excellent way of learning Isabelle in depth. However, the Tutorial is a little outdated; although its details remain correct, it presents a style of proof that has become increasingly obsolete with the advent of structured proofs and ever greater automation. These lecture notes take a very different approach and refer you to specific sections of the Tutorial that are particularly appropriate.

The other tutorials listed on the documentation page are mainly for advanced users.

Interactive Formal Verification I:Introduction

Lawrence C Paulson
Computer Laboratory
University of Cambridge

What is Interactive Proof?

- Work in a logical formalism
- precise definitions of concepts
- formal reasoning system
- Construct hierarchies of definitions and proofs
- libraries of formal mathematics
- specifications of components and properties

Interactive Theorem Provers

- Based on higher-order logic
- Isabelle, HOL (many versions), PVS
- Based on constructive type theory
- Coq,Twelf, Agda, ...
- Based on first-order logic with recursion
- ACL2

Higher-Order Logic

- First-order logic extended with functions and sets
- Polymorphic types, including a type of truth values
- No distinction between terms and formulas
- ML-style functional programming
"HOL = functional programming + logic"

Basic Syntax of Formulas

formulas A, B, \ldots can be written as

$$
\begin{array}{ccc}
(A) & t=u & \sim A \\
A \& B & A \mid B & A-->B \\
A<->B & A L L x . A & E X x . A
\end{array}
$$

(Among many others)
Isabelle also supports symbols such as

$$
\leq \geq \neq \wedge \vee \rightarrow \leftrightarrow \forall \exists
$$

Some Syntactic Conventions

In $\forall x . A \wedge B$, the quantifier spans the entire formula Parentheses are required in $A \wedge(\forall x y . B)$

Binary logical connectives associate to the right: $A \rightarrow$ $B \rightarrow C$ is the same as $A \rightarrow(B \rightarrow C)$
$\neg A \wedge B=C \vee D$ is the same as $((\neg A) \wedge(B=C)) \vee D$

Basic Syntax of Terms

- The typed λ-calculus:
- constants, c
- variables, x and flexible variables, ?x
- abstractions $\lambda x . t$
- function applications $\mathrm{t} u$
- Numerous infix operators and binding operators for arithmetic, set theory, etc.

Types

- Every term has a type; Isabelle infers the types of terms automatically.We write $t:: \tau$
- Types can be polymorphic, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.
- A formula is simply a term of type bool.
- There are types of ordered pairs and functions.
- Other important types are those of the natural numbers (nat) and integers (int).

Product Types for Pairs

- $\left(x_{1}, x_{2}\right)$ has type $\tau_{1} * \tau_{2}$ provided $x_{i}:: \tau_{i}$
- $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ abbreviates $\left(x_{1}, \ldots,\left(x_{n-1}, x_{n}\right)\right)$
- Extensible record types can also be defined.

Function Types

- Infix operators are curried functions
- + : : nat $=>$ nat $=>$ nat
- \& : : bool => bool => bool
- Curried function notation: $\lambda x y . t$
- Function arguments can be paired
- Example: nat*nat $=>$ nat
- Paired function notation: $\lambda(x, y) . t$

Arithmetic Types

- nat: the natural numbers (nonnegative integers)
- inductively defined: 0 , Suc n
- operators include + - * div mod
- relations include < s dvd (divisibility)
- int: the integers, with + - * div mod ...
- rat, real: + - * / sin cos ln ...
- arithmetic constants and laws for these types

HOL as a Functional Language

Proof by Induction

Example of a Structured Proof

- base case and inductive step can be proved explicitly
- Invaluable for proofs that need intricate

```
lemma "app xs Nil = xs"
proof (induct xs)
    case Nil
    show "app Nil Nil = Nil"
        by auto
next
    case (Cons a xs)
    show "app (Cons a xs) Nil = Cons a xs"
        by auto
qed
``` manipulation of facts

\title{
Interactive Formal Verification 2: Isabelle Theories
}

\author{
Lawrence C Paulson \\ Computer Laboratory \\ University of Cambridge
}

\section*{A Tiny Theory}

\section*{theory BT imports Main begin}
datatype 'a bt =

\section*{the theory it builds upon}

Lf
| Br 'a "'a bt" "'a bt"

\section*{declarations of types,}
fun reflect : : "'a bt => 'a bt" where constants, etc

\section*{Notes on Theory Structure}
- A theory can import any existing theories.
- Types, constants, etc., must be declared before use.
- The various declarations and proofs may otherwise appear in any order.
- Many declarations can be confined to local scopes.
- A finished theory can be imported by others.

\section*{Some Fancy Type Declarations}
```

typedecl loc -- "an unspecified type of locations"
types
val = nat -- "values"
state = "loc => val"
aexp = "state => val"
bexp = "state => bool" -- "just functions on states"
datatype
concrete syntax for commands
com = SKIP

Assign loc aexp	("_ :== _ " 60)
Semi com com	("_; _" [60, 60] 10)
Cond bexp com com	("IF _ THEN _ ELSE _"
While bexp com	("WHILE _ DO _" 60)

recursive type of commands

```

\section*{Notes on Type Declarations}
- Type synonyms merely introduce abbreviations.
- Recursive data types are less general than in functional programming languages.
- No recursion into the domain of a function.
- Mutually recursive definitions can be tricky.
- Recursive types are equipped with proof methods for induction and case analysis.

\section*{Basic Constant Definitions}

\section*{Notes on Constant Definitions}
- Basic definitions are not recursive.
- Every variable on the right-hand side must also appear on the left.
- In proofs, definitions are not expanded by default!
- Defining the constant \(C\) to denote \(t\) yields the theorem C_def, asserting \(C=t\).
- Abbreviations can be declared through a separate mechanism.

\section*{Lists in Isabelle}
- We illustrate data types and functions using a reduced Isabelle theory that lacks lists.
- The standard Isabelle environment has a comprehensive list library:
- Functions \# (cons), @ (append), map, filter, nth, take, drop, takeWhile, dropWhile, ...
- Cases: (case xs of []\(\Rightarrow[] \mid x \# x s \Rightarrow\)...)
- Over 600 theorems!

\section*{List Induction Principle}

To show \(\varphi(x s)\), it suffices to show the base case and inductive step:
- \(\varphi(\mathrm{Nil})\)
- \(\varphi(x s) \Rightarrow \varphi(\operatorname{Cons}(x, x s))\)

The principle of case analysis is similar, expressing that any list has one of the forms Nil or Cons \((x, x s)\) (for some \(x\) and \(x s\)).

\section*{Proof General}

\section*{Proof by Induction}

\section*{Finishing a Proof}

\section*{Another Proof Attempt}

\section*{Stuck!}

\section*{Stuck Again!}

\section*{The Final Piece of the Jigsaw}

\section*{Interactive Formal Verification 3: Elementary Proof \\ Lawrence C Paulson \\ Computer Laboratory \\ University of Cambridge}

\section*{Goals and Subgoals}
- We start with one subgoal: the statement to be proved.
- Proof tactics and methods typically replace a single subgoal by zero or more new subgoals.
- Certain methods, notably auto and simp_all, operate on all outstanding subgoals.
- We finish when no subgoals remain.

\section*{Structure of a Subgoal}
 local variables)

\section*{Proof by Rewniting}
```

app (Cons x xs) ys Cons x (app xs ys)
rev (Cons x xs) app (rev xs) (Cons x Nil) recursive defns
rev (app xs ys) کapp (rev ys) (rev xs) « lemma
app (app xs ys) zs }\int\mathrm{ app xs (app ys zs) }\longleftrightarrow induction hyp
rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))
rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

```
```

app (rev ys) (rev (Cons a xs)) =

```
app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))
```

app (rev ys) (app (rev xs) (Cons a Nil))

```

\section*{Rewriting with Equivalencies}
(\(x\) dvd \(-y\)) \(=(x\) dvd \(y\))
\((a * b=0)=(a=0 \vee b=0)\)
introduces a case split on the sign of \(c\)
\((A-B \subseteq C)=(A \subseteq B \cup C)\)
\((a * c \leq b * c)=((0<c \rightarrow a \leq b) \wedge(c<0 \rightarrow b \leq a))\)
- Logical equivalencies are just boolean equations.
- They lead to a clear and simple proof style.
- They can also be written with the syntax \(P \leftrightarrow Q\).

\section*{Automatic Case Splitting}

Simplification will replace
\[
\begin{gathered}
P(\text { if } b \text { then } x \text { else } y) \\
\text { by } \\
(b \rightarrow P(x)) \wedge(\neg b \rightarrow P(y))
\end{gathered}
\]
- By default, this only happens when simplifying the conclusion.
- Other case splitting can be enabled.

\section*{Conditional Rewrite Rules}
\[
\begin{aligned}
& x s \neq[] \Rightarrow \text { hd }(x s @ y s)=h d x s \\
& n \leq m \Rightarrow(\text { Suc } m)-n=\operatorname{Suc}(m-n) \\
& {[|a \neq 0 ; b \neq 0|] \Rightarrow b /(a * b)=1 / a}
\end{aligned}
\]
- First match the left-hand side, then recursively prove the conditions by simplification.
- If successful, applying the resulting rewrite rule.

\section*{Termination Issues}
- Looping: \(f(x)=h(g(x)), g(x)=f(x+2)\)
- Looping: \(P(x) \Rightarrow x=0\)
- simp will try to use this rule to simplify its own precondition!
- \(x+y=y+x\) is actually okay!
- Permutative rewrite rules are applied but only if they make the term "lexicographically smaller".

\section*{The Methods simp and auto}
- simp performs rewriting (along with simple arithmetic simplification) on the first subgoal
- auto simplifies all subgoals, not just the first.
- auto also applies all obvious logical steps
- Splitting conjunctive goals and disjunctive assumptions
- Performing obvious quantifier removal

\section*{Variations on simp and auto}

auto with options

\section*{Rules for Arithmetic}
- An identifier can denote a list of lemmas.
- add_ac and mult_ac: associative/commutative properties of addition and multiplication
- algebra_simps: useful for multiplying out polynomials
- field_simps: useful for multiplying out the denominators when proving inequalities

Example: auto simp add: field_simps

\section*{Simple Proof by Induction}
- State the desired theorem using "lemma", with its name and optionally [simp]
- Identify the induction variable
- Its type should be some datatype (incl. nat)
- It should appear as the argument of a recursive function.
- Complicating issues include unusual recursions and auxiliary variables.

\section*{Completing the Proof}
- Apply"induct" with the chosen variable.
- The first subgoal will be the base case, and it should be trivial using "simp".
- Other subgoals will involve induction hypotheses and the proof of each may require several steps.
- Naturally, the first thing to try is "auto", but much more is possible.

\section*{Basics of Proof General}
- You create or visit an Isabelle theory file within the text editor, Emacs.
- Moving forward executes Isabelle commands; the processed text turns blue.
- Moving backward undoes those commands.
- Go to end processes the entire theory; you can also go to start, or go to an arbitrary point in the file.
- Go to home takes you to the end of the blue (processed) region.

\section*{Proof General Tools}

\section*{Interactive Formal Verification 4: Advanced Recursion, Induction and Simplification \\ Lawrence C Paulson \\ Computer Laboratory \\ University of Cambridge}

\section*{A Failing Proof by Induction}

\section*{Generalising the Induction}

\section*{Generalising:Another Way}
 framework, it has meta-level versions of the universal quantifier and the implication symbol, and we generally avoid universal quantifiers in theorems. But it is important to remember that behind the convenience of the method illustrated here is a straightforward use of logic: we are still generalising induction formula. For more complicated examples, see the Tutorial, 9.2 .1 Massaging the Proposition.

\section*{Unusual Recursions}

\section*{Recursion: Key Points}
- Recursion in one variable, following the structure of a datatype declaration, is called primitive.
- Recursion in multiple variables, terminating by size considerations, can be handled using fun.
- fun produces a special induction rule.
- fun can handle nested recursion.
- fun also handles pattern matching, which it completes.

\section*{Special Induction Rules}
- They follow the function's recursion exactly.
- For Ackermann, they reduce \(P x y\) to
- \(P 0 n\), for arbitrary \(n\)
- \(\quad P(\) Suc \(m) 0\) assuming \(P m\) 1, for arbitrary \(m\)
- \(\quad P\) (Suc \(m\)) (Suc \(n\)) assuming \(P\) (Suc \(m\)) \(n\) and \(P m\) (ack (Suc m) \(n\)), for arbitrary \(m\) and \(n\)
- Usually they do what you want. Trial and error is tempting, but ultimately you will need to think!

\section*{Another Unusual Recursion}

\section*{Proof Outline}
\[
\begin{aligned}
& \text { set }(m e r g e ~(x \# x s)(y \# y s))=\operatorname{set}(x \# x s) U \text { set (y \# ys) } \\
& \text { set (if } x \leq y \text { then } x \text { \# merge } x s \text { (} y \# y s \text {) } \\
& \text { else } y \text { \# merge (x\#xs) ys) = } \quad \text {). } \\
& \text { = } \\
& (x \leq y \rightarrow \operatorname{set}(x \# \text { merge } x s(y \# y s))=\ldots) \& \\
& (\neg x \leq y \rightarrow \operatorname{set}(y \# \text { merge }(x \# x s) y s)=\ldots) \\
& \text { = } \\
& (x \leq y \rightarrow\{x\} \cup \operatorname{set}(m e r g e x s(y \# y s))=\ldots) \& \\
& (\neg x \leq y \rightarrow\{y\} u \operatorname{set}(m e r g e(x \# x s) y s)=\ldots \text {) } \\
& \text { = } \\
& (x \leq y \rightarrow\{x\} U \text { set } x s U \text { set }(y \# y s)=\ldots) \& \\
& (\neg x \leq y \rightarrow\{y\} U \text { set }(x \# x s) U \text { set } y s=\ldots)
\end{aligned}
\]

\section*{The Case Expression}
- Similar to that found in the functional language ML.
- Automatically generated for every Isabelle datatype.
- The simplifier can (upon request!) perform casesplits analogous to those for "if".
- Case splits in assumptions (as opposed to the conclusion) never happen unless requested.

\section*{Case-Splits for Lists}
```

fun ordered :: "'a list => bool"
where
"ordered [] = True"
"ordered (x\#l) =
(case l of [] => True
| Cons y xs => (x\leqy \& ordered (y\#xs)))"

```

\section*{Case-Splitting in Action}

There isn't room to show the full subgoal, but the second part of the conjunction (beginning with \(\neg \mathrm{x} \leq \mathrm{y}\)) has a similar form to the first part, which is visible above.
Note that the last step used was simp_all, rather than auto. The latter would break up the subgoal according to its logical structure, leaving us with 14 separate subgoals! Simplification, on the other hand, seldom generates multiple subgoals. The one common situation where this can happen is indeed with case splitting, but in our example, case splitting completely proves the theorem.

\section*{Completing the Proof}

\section*{Case Splitting for Lists}

Simplification will replace
\[
\begin{gathered}
P(\text { case } x s \text { of }[] \Rightarrow a \mid \text { Cons } a l \Rightarrow b a l) \\
\text { by } \\
(x s=[] \rightarrow P(a)) \wedge(\forall a l . x s=a \# l \rightarrow P(b a l))
\end{gathered}
\]
- It creates a case for each datatype constructor.
- Here it causes looping if combined with the second rewrite rule for ordered.

\section*{Summary}
- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.
- The "case" operator can often be dealt with using automatic case splitting...
- but complex simplifications can run forever!

\section*{A Helpful Tip}

Many tracing options can be enabled within Proof General. Switch them off unless you need them, because they can generate an enormous output and take a lot of processor time. Their interpretation is seldom easy!

\title{
Interactive Formal Verification 5: Logic in Isabelle
}

\author{
Lawrence C Paulson \\ Computer Laboratory \\ University of Cambridge
}

\section*{Logical Frameworks}
- A formalism to represent other formalisms
- Support for natural deduction
- A common basis for implementations
- Type theories are commonly used, but Isabelle uses a simple meta-logic whose main primitives are
- \(\quad \Rightarrow\) (implication)
- \(\Lambda\) (universal quantification).

\section*{Natural Deduction in Isabelle}

\(\frac{P \wedge Q}{P}\)
\(\frac{P \wedge Q}{Q}\)

\[
P \Rightarrow(Q \Rightarrow P \wedge Q))
\]
\[
P \wedge Q \Rightarrow P
\]
\[
P \wedge Q \Rightarrow Q
\]
\[
P \rightarrow Q \Rightarrow(P \Rightarrow Q)
\]

\section*{Meta-implication}
- The symbol \(\Rightarrow\) (or \(==>\)) expresses the relationship between premise and conclusion
- ... and between subgoal and goal.
- It is distinct from \(\rightarrow\), which is not part of Isabelle's underlying logical framework.
- \(P \Rightarrow(Q \Rightarrow R)\) is abbreviated as \(\llbracket P ; Q \rrbracket \Rightarrow R\)

\section*{A Trivial Proof}

The method "rule" is one of the most primitive in Isabelle. It matches the conclusion of the supplied rule with that of the a subgoal, which is replaced by new subgoals: the corresponding instances of the rule's premises. See the Tutorial, 5.7 Interlude: the Basic Methods for Rules.

Normally, it applies to the first subgoal, though a specific goal number can be specified; many other proof methods follow the same convention.

\section*{Proof by Assumption}

\section*{Unknowns in Subgoals}

\section*{Unknowns and Unification}

\section*{Discharging Assumptions}

\((P \Rightarrow Q) \Rightarrow P \rightarrow Q\)

\section*{A Proof using Assumptions}

\section*{After Implies-Introduction}

\section*{Disjunction Elimination}

\section*{The Final Step}

\section*{Quantifiers}
\[
\frac{P(t)}{\exists x \cdot P(x)} \quad \mathrm{P}(\mathrm{x}) \Rightarrow \exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x})
\]

\section*{A Tiny Quantifier Proof}

\section*{Conjunction Elimination}

\section*{Now for \(\exists\)-introduction}

\section*{An Unknown for the Witness}

\section*{Done!}

\title{
Interactive Formal Verification 6: Sets
}

\author{
Lawrence C Paulson \\ Computer Laboratory \\ University of Cambridge
}

\section*{Set Notation in Isabelle}
- Set notation is crucial to mathematical discourse.
- Set-theoretic abstractions naturally express many complex constructions.
- A set in high-order logic is a boolean-valued map.
- The elements of such a set must all have the same type...
- and we have the universal set for each type.

\section*{Set Theory Primitives}
\[
\begin{aligned}
e \in\{x \cdot P(x)\} & \Longleftrightarrow P(e) \\
e \in\{x \in A \cdot P(x)\} & \Longleftrightarrow e \in A \wedge P(e) \\
e \in-A & \Longleftrightarrow e \notin A \\
e \in A \cup B & \Longleftrightarrow e \in A \vee e \in B \\
e \in A \cap B & \Longleftrightarrow e \in A \wedge e \in B \\
e \in \operatorname{Pow}(A) & \Longleftrightarrow e \subseteq A
\end{aligned}
\]

\section*{Big Union and Intersection}
\[
\begin{aligned}
e \in(\bigcup x . B(x)) & \Longleftrightarrow \exists x \cdot e \in B(x) \\
e \in(\bigcup x \in A \cdot B(x)) & \Longleftrightarrow \exists x \in A \cdot e \in B(x) \\
e \in \bigcup A & \Longleftrightarrow \exists x \in A \cdot e \in x
\end{aligned}
\]

And the analogous forms of intersections...

\section*{Functions}
\[
\begin{gathered}
e \in\left(f^{\prime} A\right) \Longleftrightarrow \exists x \in A . e=f(x) \\
e \in\left(f-{ }^{\prime} A\right) \Longleftrightarrow f(e) \in A \\
f(x:=y)=(\lambda z . \text { if } z=x \text { then } y \text { else } f(z))
\end{gathered}
\]
- Also inj, surj, bij, inv, etc. (injective,...)
- Don't re-invent image and inverse image!!

\section*{Finite Sets}
\[
\begin{gathered}
\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{insert}\left(a_{1}, \ldots, \operatorname{insert}\left(a_{n},\{ \}\right)\right) \\
e \in \operatorname{insert}(a, B) \Longleftrightarrow e=a \vee e \in B
\end{gathered}
\]
\[
\text { finite }(A \cup B)=(\text { finite } A \wedge \text { finite } B)
\]
\[
\text { finite } A \Longrightarrow \operatorname{card}(\text { Pow } A)=2^{\operatorname{card} A}
\]

\section*{Intervals, Sums and Products}
\[
\begin{aligned}
&\{\ldots<u\}=\{x . x<u\} \\
&\{\ldots u\}=\{x . x \leq u\} \\
&\{l<\ldots\}=\{x \cdot l<x\} \\
&\{l \ldots\}=\{x \cdot l \leq x\} \\
&\{l<\ldots<u\}=\{1<\ldots\} \cap\{\ldots<u\} \\
&\{l \ldots<u\}=\{1 \ldots\} \cap\{\ldots<u\} \\
& \text { setsum } f A \text { and setprod } f A \\
& \sum i \in l . f \text { and } \prod i \in l . f
\end{aligned}
\]

\section*{A Simple Set Theory Proof}

\section*{A Harder Proof Involving Sets}

\section*{Outcome of the Induction}

The base case is trivial, because both sides of the equality clearly equal zero. In the induction step, the induction hypothesis (which concerns the set \(F\)) will be applicable, because setsum \(f(\) insert \(a F)=f a+\operatorname{setsum} f F\)

\section*{Almost There!}

\section*{Finished!}

\section*{Proving Theorems about Sets}
- It is not practical to learn all the built-in lemmas.
- Instead, try an automatic proof method:
- auto
- force
- blast
- Each uses the built-in library, comprising hundreds of facts, with powerful heuristics.

\section*{Finding Theorems about Sets}

\section*{Finding Theorems about Sets}

\section*{The Results!}


```

searched for:

```
searched for:
 " u ""
 " u ""
 "- -"
 "- -"
 "card"
 "card"
found 2 theorems in 0.120 secs:
found 2 theorems in 0.120 secs:
Finite_Set.card_Un_Int:
Finite_Set.card_Un_Int:
 \llbracketfinite ?A; finite ?B\rrbracket
 \llbracketfinite ?A; finite ?B\rrbracket
 C card ?A + card ?B = card (?A \cup ?B) + card (?A \cap ?B)
 C card ?A + card ?B = card (?A \cup ?B) + card (?A \cap ?B)
Finite_Set.card_Un_disjoint:
Finite_Set.card_Un_disjoint:
 \llbracketfinite ?A; finite ?B; ?A \cap ?B = {}\rrbracket \Longrightarrow card (?A \cup ?B) = card ?A + card ?B
 \llbracketfinite ?A; finite ?B; ?A \cap ?B = {}\rrbracket \Longrightarrow card (?A \cup ?B) = card ?A + card ?B
-u-:%%- *response* All L2 (Isar Messages Utoks Abbrev;)
```


# Interactive Formal Verification 7: Inductive Definitions 

Lawrence C Paulson<br>Computer Laboratory<br>University of Cambridge

## Defining a Set Inductively

- The set of even numbers is the least set such that
- 0 is even.
- If $n$ is even, then $n+2$ is even.
- These can be viewed as introduction rules.
- We get an induction principle to express that no other numbers are even.
- Induction is used throughout mathematics, and to express the semantics of programming languages.


## Inductive Definitions in Isabelle



## Even Numbers Belong to Ev



## Proving Set Mendoership



## Finishing the Proof



## Rule Induction

- Proving something about every element of the set.
- It expresses that the inductive set is minimal.
- It is sometimes called "induction on derivations"
- There is a base case for every non-recursive introduction rule
- ...and an inductive step for the other rules.


## Ev Has only Even Numbers



## An Example of Rule Induction



## Nearly There!



## The arith Proof Method



## Defining Finiteness



## The Union of Two Finite Sets



## A Subset of a Finite Set



## A Crucial Point in the Proof



## Time to Try Sledgehammer!



## Success!



## The Completed Proof



## Notes on Sledgehammer

- It is always available, though it usually fails...
- It does not prove the goal, but returns a call to metis. This command usually works...
- The minimise option removes redundant theorems, increasing the likelihood of success.
- Calling metis directly is difficult unless you know exactly which lemmas are needed.


## Interactive Formal Verification 8: Operational Semantics

Lawrence C Paulson<br>Computer Laboratory<br>University of Cambridge

## Overview

- The operational semantics of programming languages can be given inductively.
- Type checking
- Expression evaluation
- Command execution, including concurrency
- Properties of the semantics are frequently proved by induction.
- Running example: an abstract language with WHILE


## Language Syntax

typedecl loc -- "an unspecified type of locations"types	
val = nat -- "values"	
state = "loc => val"	
```aexp = "state => val" bexp = "state => bool" "just functions on states"```	
datatype Arithmetic \& boolean expressions are com = SKIP just functions over the state	
Assign loc aexp	("_ :== _ " 60)
Semi com com	"_; _" [60, 60] 10)
Cond bexp com com	("IF _ THEN _ ELSE _" 60)
While bexp com	($\mathrm{WHILE} E$ _ DO _ " 60)

Language Semantics

$\langle\mathbf{s k i p}, s\rangle \rightarrow s \quad\langle x:=a, s\rangle \rightarrow s[x:=a]$

$$
\frac{\left\langle c_{0}, s\right\rangle \rightarrow s^{\prime \prime} \quad\left\langle c_{1}, s^{\prime \prime}\right\rangle \rightarrow s^{\prime}}{\left\langle c_{0} ; c_{1}, s\right\rangle \rightarrow s^{\prime}}
$$

$\frac{b s \quad\left\langle c_{0}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } c_{0} \text { else } c_{1}, s\right\rangle \rightarrow s^{\prime}} \quad \frac{\neg b s \quad\left\langle c_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } c_{0} \text { else } c_{1}, s\right\rangle \rightarrow s^{\prime}}$
$\frac{\neg b s}{\langle\text { while } b \text { do } c, s\rangle \rightarrow s} \quad \frac{b s \quad\langle c, s\rangle \rightarrow s^{\prime \prime} \quad\left\langle\text { while } b \text { do } c, s^{\prime \prime}\right\rangle \rightarrow s^{\prime}}{\langle\text { while } b \text { do } c, s\rangle \rightarrow s^{\prime}}$

A"big-step" semantics

Formalised Language Semantics

In the previous lecture, we used a related declaration, inductive_set. Note that there is no real difference between a set and a predicate of one argument. However, formal semantics generally requires a predicate three or four arguments, and the corresponding set of triples is a little more difficult to work with. Attaching special syntax, as shown above, also requires the use of a predicate. Therefore, formalised semantic definitions will generally use inductive.

Rule Inversion

- When 〈skip, $s\rangle \rightarrow s^{\prime}$ we know $s=s^{\prime}$- When 〈if b then c_{0} else $\left.c_{1}, s\right\rangle \rightarrow s$ ' we know
- b and $\left\langle c_{0}, s\right\rangle \rightarrow s^{\prime}$, or...
- $\neg b$ and $\left\langle c_{1}, s\right\rangle \rightarrow s$,
- This sort of case analysis is easy in Isabelle.

Rule Inversion in Isabelle

The pattern for each rule inversion lemma appears in quotation marks. Isabelle generates a theorem and gives it the name shown. Each theorem is also made available to Isabelle's automatic tools.

It is possible to write elim! rather than just elim; the exclamation mark tells Isabelle to apply the lemma aggressively. However, this must not be done with the theorem whileE: it expands an occurrence of 〈while b do $c, s\rangle \rightarrow s$ ' and generates another formula of essentially the same form, thereby running for ever.

Rule Inversion Again

A Non-Termination Proof

\langle while true do $c, s\rangle \nrightarrow s^{\prime}$

Not provable by induction!
$\left.\langle c, s\rangle \rightarrow s^{\prime}\right\rangle \Rightarrow \forall c^{\prime} . c \neq\left(\right.$ while true do $\left.c^{\prime}\right)$

The inductive version considers all possible commands

Non-Termination in Isabelle

Done!

Determinacy

$$
\frac{\langle c, s\rangle \rightarrow t \quad\langle c, s\rangle \rightarrow u}{t=u}
$$

If a command is executed in a given state, and it terminates, then this final state is unique.

Determinacy in Isabelle

Proved by Rule Inversion

Semantic Equivalence

The printed version of these notes does not include the actual proofs, because they are revealed during the presentation. They are reproduced below. It is necessary to unfold the definition of semantic equivalence, equiv_c. By default, Isabelle does not unfold nonrecursive definitions.
lemma equiv_refl:
"c ~ c"
by (auto simp add: equiv_c_def)
lemma equiv_sym:
"c1 ~ c2 ==> c2 ~ c1"
by (auto simp add: equiv_c_def)
lemma equiv_trans:
"c1 ~ c2 ==> c2 ~ c3 ==> c1 ~ c3"
by (auto simp add: equiv_c_def)

More Semantic Equivalence!

The properties shown here establish that semantic equivalence is a congruence relation with respect to the command constructors Semi and Cond. The proofs are again trivial, providing we remember to unfold the definition of semantic equivalence, equiv_c. Proving the analogous congruence property for While is harder, requiring rule induction with an induction formula similar to that used for another proof about While earlier in this lecture.

The proof method force is similar to auto, but it is more aggressive and it will not terminate until it has proved the subgoal it was applied to. In these examples, auto will give up too easily.

And More!!

By some fluke, force will not solve the second of these. Sometimes you just have to try different things.
Note that a proof consisting of a single proof method can be written using the command "by", which is more concise than writing "apply" followed by "done". It is a small matter here, but structured proofs (which we are about to discuss) typically consist of numerous one line proofs expressed using "by".

A New Introduction Rule

Giving the attribute intro! to a theorem informs Isabelle's automatic proof methods, including auto, force and blast, that this theorem should be used as an introduction rule. In other words, it should be used in backward-chaining mode: the conclusion of the rule is unified with the subgoal, continuing the search from that rule's premises. It is now unnecessary to mention this theorem when calling those proof methods. The theorem shown can now be proved using blast alone. We do not need to refer to equivI or to the definition of equiv_c. The approach used to prove other examples of semantic equivalence in this lecture do not terminate on this problem in a reasonable time. The proof shown only requires 12 ms.

The exclamation mark (!) tells Isabelle to apply the rule aggressively. It is appropriate when the premise of the rule is equivalent to the conclusion; equivalently, it is appropriate when applying the rule can never be a mistake. The weaker attribute intro should be used for a theorem that is one of many different ways of proving its conclusion.

Final Remarks on Semantics

- Small-step semantics is treated similarly.
- Variable binding is crucial in larger examples, and should be formalised using the nominal package.
- choosing a fresh variable
- renaming bound variables consistently
- Serious proofs will be complex and difficult!

Interactive Formal Verification 9: Structured Proofs

Lawrence C Paulson
Computer Laboratory
University of Cambridge

A Proof about "Divides"

$$
\mathrm{b} \text { dvd } \mathrm{a} \leftrightarrow(\exists \mathrm{k} . \mathrm{a}=\mathrm{b} \times \mathrm{k})
$$

Complex Subgoals

- Isabelle provides many tactics that refer to bound variables and assumptions.
- Assumptions are often found by matching.
- Bound variables can be referred to by name, but these names are fragile.
- Structured proofs provide a robust means of referring to these elements by name.
- Structured proofs are typically verbose but much more readable than linear apply-proofs.

A Structured Proof

The Elements of Isar

- A proof context holds a local variables and assumptions of a subgoal.
- In a context, the variables are free and the assumptions are simply theorems.
- Closing a context yields a theorem having the structure of a subgoal.
- The Isar language lets us state and prove intermediate results, express inductions, etc.

Getting Started

The simplest way to get started is as shown: applying auto with any necessary definitions. The resulting output will then dictate the structure of the final proof.
This style is actually rather fragile. Potentially, a change to auto could alter its output, causing a proof based around this precise output to fail. There are two ways of reducing this risk. One is to use a proof method less general than auto to unfold the definition of the divides relation and to perform basic logical reasoning. The other is to encapsulate the proofs of the two subgoals in local blocks that can be passed to auto; this approach requires a rather sophisticated use of Isar. In fact, these concerns appear to be exaggerated: proofs written in this style seldom fail.

The Proof Skeleton

We have used sorry to omit the proofs. These dummy proofs allow us to construct the outer shell and confirm that it fits together. We use show to state (and eventually prove for real!) the subgoal's conclusion. Since we have renamed the bound variable ka to m, we must rename it in the assumption and conclusions. The context that we create with fix/assume, together with the conclusion that we state with show, must agree with the original subgoal. Otherwise, Isabelle will generate an error message.

Fleshing Out that Skeleton

Looking at the first subgoal, we see that it would help to transform the assumption to resemble the body of the quantified formula that is the conclusion. Proving that conclusion should then be trivial, because the existential witness ($m-1$) is explicit. We use sorry to obtain this intermediate result, then confirm that the conclusion is provable from it using blast. Because it is a one line proof, we write it using "by". It is permissible to insert a string of "apply" commands followed by "done", but that looks ugly.

We give labels to the assumption and the intermediate result for easy reference. We can then write "using 1", for example, to indicate that the proof refers to the designated fact. However, referring to the previous result is extremely common, and soon we shall streamline this proof to eliminate the labels. Also, labels do not have to be integers: they can be any lsabelle identifiers.

Completing the Proof

Streamlining the Proof

```
assume 1: "n + k=k* m" }\longrightarrow\mathrm{ assume "n + k = k* m"
have 2: "n = k* (m - 1)" using 1 }\longrightarrow\mathrm{ hence "n = k* (m - 1)"
    by (metis diff_add_inverse diff
show "\existsm'. n = k * m'" using 2
    by (metis diff_add_inverse diff
```

- hence means have, using the previous fact
- thus means show, using the previous fact
- There are numerous other tricks of this sort!

Another Proof Skeleton

This is an example of an obvious fact is proof is not obvious. Clearly $m \neq 0$, since otherwise $m^{*} n=0$. If we can also show that $|m| \geq 2$ is impossible, then the only remaining possibility is $I m I=1$.
In this example, auto can do nothing. No proof steps are obvious from the problem's syntax. So the Isar proof begins with "-", the null proof. This step does nothing but insert any "pending facts" from a previous step (here, there aren't any) into the proof state. It is quite common to begin with "proof -".

Starting a Nested Proof

To begin with "proof" (not to be confused with "proof -") applies a default proof method. In theory, this method should be appropriate for the problem, but in practice, it is often unhelpful. The default method is determined by elementary syntactic criteria. For example, the formula " $\neg(2 \leq a b s m)$ " begins with a negation sign, so the default method applies the corresponding logical inference: it reduces the problem to proving False under the assumption $2 \leq \mathrm{abs} \mathrm{m}$.

A N PSted Drooftreneton

A Complete Proof

This example is typical of a structured proof. From the assumption, $2 \leq a b s m$, we deduce a chain of consequences that become absurd. We connect one step to the next using "hence", except that we must introduce the conclusion using "thus".

Note that we have beefed up the fact " 0 " from simply $m \neq 0$ to include as well $n \neq 0$, which we need to obtain a contradiction from $2 \times$ abs $n \leq 1$. In fact, " 0 " here denotes a list of facts.

Calculational Proofs

The Next Step

The Internal Calculation

Use "also" to attach a new link to the chain, extending the calculation. Use "finally" to refer to the calculation itself. It is usual for the proof script merely to repeat explicitly what this calculation should be, as shown above. If this is done, the proof is trivial and is written in Isar as a single dot (.).

We could instead avoid that repetition and reach the contradiction directly as follows:
also have "... = 1"
by (simp add: mn)
finally show "False" using 0
by auto

Ending the Calculation

Structure of a Calculation

- The first line is have/hence
- Subsequent lines begin, also have "... = "
- Any transitive relation may be used. New ones may be declared.
- The concluding line begins, finally have/show, repeats the calculation and terminates with (.)

Interactive Formal Verification 10: Structured Induction Proofs
 Lawrence C Paulson
 Computer Laboratory
 University of Cambridge

A Proof about Binary Trees

Finding Predefined Cases

The Finished Proof

With all these abbreviations, the induction formula does not have to be repeated in its various instances. The instances that are to be proved are abbreviated as ?case; they (and the induction hypotheses) are automatically generated from the supplied list of bound variables.

Observe the use of "thus" rather than "show" in the inductive case, thereby providing the induction hypotheses to the method. In a more complicated proof, these hypotheses can be denoted by the identifier Br .hyps.

A More Sophisticated Proof

Proving the Base Case

A Nested Case Analysis

The conpleterprof

Here is an outline of the proof. If $B \subseteq A$, then it is trivial, as we can immediately use the induction hypothesis. If not, then we apply the induction hypothesis to the set B-\{a\}. We deduce that B $\{a\} \in$ Fin, and therefore $B=$ insert a $(B-\{a\}) \in$ Fin.

This proof script contains many references to facts. The facts attached to the case of an inductive proof or case analysis are denoted by the name of that case, for example, insertl, True or False. We can also refer to a theorem by enclosing the actual theorem statement in backward quotation marks. We see this above in the proof of B-\{a\} $\subseteq A$.

Which Theorems are Available?

Existential Claims:"obtain"

Continuing the Proof

The Finished Proof

Introducing "then"

 proof method, particularly if the proof method is to apply an elimination rule. The more automatic methods simply add the facts to the subgoal's assumptions.

The simplest way to include previous facts is by the keyword "then". Isabelle highlights, as shown above, the fact that have been "picked".

Another Example of "obtain"

$(\operatorname{map} f x s=y \# y s) \leftrightarrow(\exists z z s . x s=z \# z s \& f z=y \& \operatorname{map} f z=y s)$

Facts from Two Sources

Finishing Up

Unusually, we prove length zs = length ys using the method "rule" rather than some automatic method such as "auto". This step needs the induction hypothesis, and we could indeed have included it via "using Cons" and then invoked "auto". But this particular result is simply the conclusion of the induction hypothesis, whose premise was proved in the previous step. Whether to prefer automatic methods or precise steps is a matter of taste, and people argue about which approach is preferable.

Now consider the proof being undertaken at this moment, as shown by Isabelle's output. The reasoning should be clear: the included facts obviously imply the final goal for this case, written above as "?case".

The Complete Proof

Additional Proof Structures

```
case (insertI A a B) case (insertI A a B)
show "B \in Fin"
proof (cases "B\subseteqA")
    case True
    c
        by auto by auto
next
    case False
    have Ba: "B - {a}\subseteq A" using ` B\subseteq insert a A` have Ba: "B - {a}\subseteq A" using ` B\subseteq insert a A`
            by auto by auto
    hence "B= insert a(B - {a})" using False }\longrightarrow\frac{\mathrm{ with False have "B = insert a (B - {a})"}}{\mathrm{ Fy }
            by auto
    also have "... \in Fin" using insertI Ba \longrightarrow also from insertI Ba have "... 隹 Fin"
        by blast
    finally show "B \in Fin" . 
    show "B \in Fin"
proof (cases "B\subseteqA")
    case True
next
ext
                            case False
                            by auto
                            by blast
    finally show "B \in Fin" .
qed
qed
```

from 〈facts〉 ．．．＝．．．using 〈facts〉
with 〈facts〉 ．．．＝then from 〈facts〉．．．
（where ．．．is have／show／obtain）

Interactive Formal Verification I I: Modelling Hardware

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Basic Principles of Modelling

- Define mathematical abstractions of the objects of interest (systems, hardware, protocols,...).
- Whenever possible, use definitions - not axioms!
- Ensure that the abstractions capture enough detail.
- Unrealistic models have unrealistic properties.
- Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

 models, where the behaviour is too complex to be captured by definitions. However, a system of axioms can easily be inconsistent, which means that they imply every theorem. The most famous example of an inconsistent theory is Frege's, which was refuted by Russell's paradox. A surprising number of Frege's constructions survived this catastrophe. Nevertheless, an inconsistent theory is almost worthless.Useful models are abstract, eliminating unnecessary details in order to focus on the crucial points. The frictionless surfaces and pulleys found in school physics problems are a well-known example of abstraction. Needless to say, the real world is not frictionless and this particular model is useless for understanding everyday physics such as walking. But even models that introduce friction use abstractions, such as the assumption that the force of friction is linear, which cannot account for such phenomena as slipping on ice. Abstraction is always necessary in models of the real world, with its unimaginable complexity; it is often necessary even in a purely mathematical context if the subject material is complicated.

Hardware Verification

- Pioneered by M.J. C. Gordon and his students, using successive versions of the HOL system.
- Used to model substantial hardware designs, including the ARM4 processor.
- Works hierarchically from arithmetic units and memories right down to flip-flops and transistors.
- Crucially uses higher-order logic, modelling signals as boolean-valued functions over time.

Devices as Relations

A relation in a, b, c, d

$$
g \rightarrow s=d
$$

> The relation describes the possible combinations of values on the ports.

Values could be bits, words, signals (functions from time to bits), etc

Relational Composition

$\mathrm{S}_{1}[a, x]$

$\mathrm{S}_{2}[x, b]$

two devices modelled by two formulas

the connected ports have the same value

the connected ports have some value

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.
- The specification of the device's intended behaviour can be given by an abstract formula.
- Sometimes the implementation and specification can be proved equivalent: $\operatorname{Imp} \Leftrightarrow S p e c$.
- The property $\operatorname{Im} p \Rightarrow S p e c$ ensures that every possible behaviour of the Imp is permitted by Spec. Impossible implementations satisfy all specifications!

The Switch Model of CMOS

$\operatorname{Ptran}(g, s, d)=(\neg g \Rightarrow(d=s))$

$\operatorname{Ntran}(g, s, d)=(g \Rightarrow(d=s))$

$$
\begin{aligned}
& g \\
& \stackrel{1}{=} \quad \text { Gnd } g=(g=\mathbf{F})
\end{aligned}
$$

$$
\stackrel{P}{p} \quad \text { Pwr } p=(p=\mathbf{T})
$$

subsection\{* Specification of CMOS primitives *\}

text\{* P and N transistors *\} definition "Ptran $=(\lambda(g, a, b) .(\sim g \longrightarrow a=b))$ " definition "Ntran $=(\lambda(g, a, b) \cdot(g \longrightarrow a=b)) "$
text\{* Power and Ground*\}
definition "Pwr $\mathrm{p}=$ ($\mathrm{p}=$ True)"
definition "Gnd $p=(p=$ False $)$ "

Full Adder: Specification

$$
2 \times \text { cout }+ \text { sum }=a+b+\text { cin }
$$

text\{* 1-bit full adder specification *\}
text\{* Convert boolean to number (0 or 1) *\} definition bit_val :: "bool \Rightarrow nat" where "bit_val $p=(i f p$ then 1 else 0)"
definition "Add1Spec $=(\lambda(a, b$, cin, sum, cout $)$. 2*(bit_val cout) + bit_val sum = bit_val a + bit_val b + bit_val cin)" Because we typically use True and False to designate hardware bit values, the obvious conversion to 1 and 0 is necessary in order to express arithmetic properties. Even with this small step, expressing the specification in higher-order logic is trivial. The identifier denotes the abstract relation satisfied by a full adder, namely the legal combinations of values on the various ports.

Full Adder: Implementation

A full adder is easily expressed at the gate level in terms of exclusive-OR (to compute the sum) and other simple gating to compute the carry. The diagram above, again from Prof Gordon's notes, expresses a full adder as would be implemented directly in terms of transistors.

Full Adder in Isabelle

The logical formula above is a direct translation of the diagram on the previous slide. Needless to say, the translation from diagram to formula should ideally be automatic, and better still, driven by the same tools that fabricate the actual chip.

The theorem expresses the logical equivalence between the implementation (in terms of transistors) and the specification (in terms of arithmetic). This type of proof is trivial for reasoning tools based on BDDs or SAT solvers. Isabelle is not ideal for such proofs, and this one requires over four seconds of CPU time. In the simplifier call, the last theorem named is crucial, because it forces a case split on every existentially quantified wire.

An n-bit Ripple-Carry Adder

- Cascading several full adders yields an n-bit adder.
- The implementation is expressed recursively.
- The specification is obvious mathematics.

Adder Specification

Adder Implementation

a zero-bit adder simply connects the carry lines!

Partial Correctness Proof

We are proving partial correctness only: that the implementation implies the specification. The term "partial correctness" here refers to a limitation of the approach, namely that an inconsistent implementation (one with short circuits) can imply any specification. Termination, obviously, plays no role in this circuit.

The base case is trivial. Our task in the induction step Is shown on the slide. It is expressed in terms of predicates for the implementation and specification. The induction hypothesis asserts that the implementation implies the specification for n. We now assume the implementation for $n+1$ and must prove the corresponding specification.

Using the Induction Hypothesis

A Tiresome Calculation

The Finished Proof

We end up with a fairly simple structure. Note that we could have used it Add1Correct earlier in the proof, obtaining Add1: "Add1Spec ..." directly.
To repeat: we have proved that every possible configuration involving the connectors to our circuit satisfies the specification of an n-bit adder. Tools based on BDDs or SAT solvers can prove instances of this result for fixed values of n, but not in the general case.

Proving Equivalence

To prove that the specification implies the implementation would yield their exact equivalence. It would also guarantee the lack of short circuits in the implementation, as the specification is obviously correct.

The verification requires the lemma shown above, which resembles the recursive case of Adder Imp. We might expect its proof to be straightforward. Unfortunately, the obvious proof attempt leaves us with 16 subgoals. A bit of thought informs us that these cases represent impossible combinations of bits. These arithmetic equations cannot hold. But how can we prove this theorem with reasonable effort?

A Crucial Lemma

 Isabelle's arithmetic decision procedures can dispose of the impossible cases with the help of that upper bound. We use a couple of tricks. One is that "using" can be inserted before the "apply" command, where it makes the given theorems available. The other trick is the keyword "of", which is described below.

The Opposite Implication

Making Instances of Theorems

- thm [of $a b c]$
replaces variables by terms from left to right
- thm [where $x=a$]
replaces the variable x by the term a
- thm [OF thm thm_{2} thm ${ }_{3}$] discharges premises from left to right
- thm [simplified] applies the simplifier to thm
- thm [attri, attr $_{2}$, attr $\left._{3}\right]$ applying multiple attributes

The most useful attributes are shown on the slide. Replacing variables in a theorem by terms (which must be enclosed in quotation marks unless they are atomic) can also be done using "where", which replaces a named variable. in the left to right list of terms or theorems, use an underscore (_) to leave the corresponding item unspecified. An example is bits_val_less [of n], which denotes bits val ?f $\mathrm{n} 2 \mathrm{n}^{\mathrm{n}}$.

Joining theorems conclusion to premise can be done in two different ways. An alternative to OF is THEN: thm [THEN thm ${ }_{2}$] joins the conclusion of thm1 to the premise of thm2. Thus it is equivalent to thm [THEN thmi]. The result of such combinations can often be simplified. Finally, we often want to apply several attributes one after another to a theorem.

Interactive Formal Verification I 2: The Mutilated Chess Board
 Lawrence C Paulson
 Computer Laboratory
 University of Cambridge

The Mutilated Chess Board

Can this damaged board be tiled using dominoes?

A clear proof requires an abstract model.

Proof Outline

- Every row of length $2 n$ can be tiled with dominoes.
- Every board of size $m \times 2 n$ can be tiled.
- Every tiled area has the same number of black and white squares.
- Removing some white squares from a tiled area leaves an area that cannot be tiled.
- No mutilated $2 m \times 2 n$ board can be tiled.

An Abstract Notion of Tiling

- A tile is a set of points (such as squares).
- Given a set of tiles (such as dominoes),
- the empty set can be tiled,
- and so can $a \cup t$ provided
- t can be tiled, and
- a is a tile disjoint from t (no overlaps!)

Tilings Defined Inductively

Simple Proofs about Tilings

Two disjoint tilings can be combined by taking their union, yielding another tiling. The induction is trivial, using the associativity of union. Section 4 of the paper "A simple formalization and proof for the mutilated chess board" explains the proof in more detail.

If each of our tiles is a finite set, then all the tilings we can create are also finite. The induction is again trivial. Even if we have infinitely many tiles, a tiling can only use finitely many of them.
We see something new here: the identifier assms. It provides a uniform way of referring to the assumptions of the theorem we are trying to prove, if we have neglected to equip those assumptions with names.

Another novelty is the method induct set: tiling, which specifies induction over the named set without requiring us to name the actual induction rule.
Yet another novelty: we can join a series of methods using commas, creating a compound method that executes its constituent methods from left to right. Lengthy chains of methods would be difficult to maintain, but joining two or three as shown is convenient. Now the proof can be expressed using "by", because it is accomplished by a single (albeit compound) method.

Dominoes for Chess Boards

The formalisation of dominoes is extremely simple: each domino is a two element set of the form $\{(i, j),(i, j+1)\}$ or $\{(i, j),(i+1, j)\}$, expressing a horizontal or vertical orientation. The set of dominoes is not actually inductive and we could have defined it by a formula, but the inductive set mechanism is still convenient.

Because each domino contains two elements, dominoes are trivially finite. The declaration shown above combines two finiteness properties, asserting that tilings that consist of dominoes are finite, and it gives this fact to the simplifier. Concluding a series of attributes by simp or intro is common.

White and Black Squares

The distinction between white and black is made using modulo-2 arithmetic. The constants "whites" and "blacks" do not have definitions in the normal sense; they are declared as abbreviations, which means that these constants never occur in terms. They provide a shorthand for expressing the terms "coloured 0" and "coloured (Suc 0)". Recall that to define a constant in Isabelle introduces an equation that can be used to replace the constant by the defining term. And this equation is not even available to the simplifier by default. With abbreviations, no such equations exist.

See the Tutorial, section 4.1.4 Abbreviations, for more information. More generally, section 4.1 describes concrete syntax and infix annotations for Isabelle constants.
It is now trivial to prove that every domino has a white square and a black square, by case analysis on the two kinds of domino. The proof requires giving the simplifier some facts about intersection and the modulus function.

Rows and Columns

The first theorem states that any row of even length can be tiled by dominoes. In the inductive step, observe how the expression $\{0 . .<2 *$ Suc $n\}$ is rewritten to involve an explicit domino, $\{(i, 2 * n),(i, \operatorname{Suc}(2 * n))\}$. Structured proofs make this sort of transformation easy, provided we are willing to write the desired term explicitly.

The alternative approach, of choosing rewrite rules that transform a term precisely as we wish, eliminates the need to write the intermediate stages of the transformation, but it can be more time-consuming overall. You know this other approach has been adopted if you see this sort of command:
apply (simp add: mult_assoc [symmetric] del: fact_Suc)
The theorem mult_assoc is given a reverse orientation using the attribute [symmetric], while the theorem fact_Suc is removed from this simplifier call.
The induction at the bottom of this slide is an example of the alternative approach done correctly. We first prove a lemma to rewrite the induction step precisely as we wish: in other words, so that it will create an instance of dominoes_tile_row. The lemma is easily proved and the inductive proof is also easy.

For Tilings, \#Whites = \#Blacks

 as cardinality and intersection. The proof is by induction on tilings. It is trivial for the empty tiling. For a non-empty one, we note that the last domino consists of a white square and a black square, added to another tiling that (by induction) has the same number of white and black squares.

No Tilings for Mutilated Boards

The other crucial point is that if some white squares are removed, then there will be fewer white squares than black ones; although obvious to us, this proof requires the series of calculations shown on the slide. Once we have established this inequality, then it is trivial to show that the remaining squares cannot be tiled.

The Final Proof...

An 8×8 chess board can be generalised slightly, but the dimensions must be even (otherwise, the removed squares will not be white) and positive (otherwise, nothing can be removed).
Here we display yet another novelty: a "defines" element. Within the proof, t is a constant whose definition is available as the theorem t def. But once the proof is finished, Isabelle stores a theorem that does not mention t at all.

The "fixes" element is necessary because otherwise the "defines" element will be rejected on the grounds that it has "hanging" variables (m and n) on the right-hand side.

The Result for Chess Boards

Finding Structured Proofs

A common way to arrive at structured proofs is to look for a short sequence of apply-steps that solve the goal at hand. If successful, you can even leave this sequence (terminated by "done") as part of the proof, though it is better style to shorten it to a use of "by". Sometimes however almost everything you try produces an error message. The problem may be that you are piping facts into your proof using then/hence/thus/using. Some proof methods (in particular, "rule" and its variants) expect these facts to match a premise of the theorem you give to "rule". The simplest way to deal with this situation is to type apply -, which simply inserts those facts as new assumptions. It would be very ugly to leave - as a step in your final proof, but it is useful when exploring.

Other Facets of Isabelle

- Document preparation: you can generate $L^{A} T_{E} X$ documents from your theories.
- Axiomatic type classes: a general approach to polymorphism and overloading when there are shared laws.
- Code generation: you can generate executable code from the formal functional programs you have verified.
- Locales: encapsulated contexts, ideal for formalising abstract mathematics.

Axiomatic Type Classes

- Controlled overloading of operators, including + $\times /^{\wedge} \leq$ and even gcd
- Can define concept hierarchies abstractly:
- Prove theorems about an operator from its axioms
- Prove that a type belongs to a class, making those theorems available
- Crucial to Isabelle's formalisation of arithmetic

Axiomatic type classes are inspired by the type class concept in the programming language Haskell, which is based on the following seminal paper: Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In 16th Annual Symposium on Principles of Programming Languages, pages 60-76. ACM Press, 1989. A very early version was available in Isabelle by 1993:

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard Huet and Gordon Plotkin, editors, Logical Environments, pages 164-188. Cambridge University Press, 1993. More recent papers include the following:

Markus Wenzel. Type Classes and Overloading in Higher-Order Logic. In: Elsa L. Gunter and Amy P. Felty, Theorem Proving in Higher Order Logics. Springer Lecture Notes In Computer Science 1275 (1997), 307-322.

Lawrence C. Paulson. Organizing Numerical Theories Using Axiomatic Type Classes. J. Automated Reasoning 331 (2004), 29-49.
Full documentation is available: see "Haskell-style type classes with Isabelle/lsar", which can be downloaded from Isabelle's documentation page, http://www.cl.cam.ac.uk/research/ hvg/Isabelle/documentation.html

Code Generation

- Isabelle definitions can be translated to equivalent ML and Haskell code.
- Inefficient and non-executable parts of definitions can be replaced by equivalent, efficient terms.
- Algorithms can be verified and then executed.
- The method eval provides reflection:it proves equations by execution.

