
Mock Test for Software Verification (L19)

Matthew Parkinson

March 12, 2010

Instructions

Answer all questions in Part A.
Answer two questions from Part B.

Part A

Question 1. Prove the following, or say why they are not true:

1. {x = 5} x := 3 {x = 3}

2. {even(x)} x := x + 1 {odd(x)}

3. {x = 5} skip {odd(x)}

Give complete details of every rule used. Justify each logical implication you
required in the rule of consequence. [6 marks]

Question 2. Prove the following:

1. {true} while true do skip {false}

2. {x = 5} while x=5 do (continue; x:=3) {false}
[4 marks]

Question 3. Prove the following:

1. {a[x] = 3} x := a[x] {x = 3}

2. {true} y := a[x]; a[y] := y {a[x] = a[y]}
[4 marks]

Question 4. Prove the following program:

{true}
let f(x) =
if x = 0 then 1
else
local y in y := f(x-1);
return x*y; in

z := f(2)
{z = 2}

1

Explain which function definition and call rules you use, and why.
You may assume the following logical facts:

fact(0) = 1
∀n. fact(n + 1) = (n + 1) ∗ fact(n)

[8 marks]

Question 5. Using separation logic prove the following

1. {x 7→ 5} [x] := 6 {x 7→ 6}

2. {x = y ∧ x 7→ z} x := [x] {y 7→ z ∧ x = z}

Give full outlines and make it clear each rule that you use. [6 marks]

Question 6. Verify using separation logic

{list(x)}disposelist(x){empty} ` {list(x)}
local t in
t := [x];
dispose x;
if t != 0 then disposelist(t)
{empty}

[6 marks]

Question 7. Using separation logic, verify the following, or state why it is not
possible:

1. {x 7→ } [x] := 5 || [x] := 5 {x 7→ 5}

2. {x 7→ ∧ f 6= g}
if f = 1 then [x] := 5
||
if g = 1 then [x] := 5
{x 7→ }

[8 marks]

Question 8. Using the Owicki/Gries method verify

{x = 0}
x := x + 3 || x := 5
{x = 8 ∨ x = 5}

[10 marks]

Part B

Question 9. (a) The conjunction rule is:

{P1} C {Q1}
{P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧Q2}

2

Prove the conjunction rule is sound for sequential Hoare logic. That is, show:

|= {P1} C {Q1} ∧ |= {P2} C {Q2}
=⇒ |= {P1 ∧ P2} C {Q1 ∧Q2}

(b) The disjunction rule is:

{P1} C {Q1}
{P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨Q2}

Prove the disjunction rule is sound for sequential Hoare logic.

Question 10. Verify the following programs meet the given specifications:
(a)

{true}
r := x;
d := 0;
while r >= y do
r := r - y;
d := d + 1

{x = (d× y) + r ∧ r < y}

(b)
{list(x)}
h := new;
t := h;
while true do
p := t
v := [x+1];
[p+1] := v;
x := [x];
if x==0 then break;
t := new;
[p] := t;

[p] := 0;
{list(x) ∗ list(h)}

Question 11. Verify the following program meets its specification:

{x = 0}
if x=0 then x := x + 1
||
if x=0 then x := x + 2
||
if x=0 then x := x + 1
{x ∈ {1, 2, 3, 4}}

You will have to add auxiliary state to the program.
You may use either Owicki/Gries method or rely-guarantee.

3

Question 12. Consider the following programming language with loops and
rapid exits from the loops using break and continue:

C ::= x := E | C; C | if B then C else C | while B do C
break n | continue n

The command break 1 breaks out of the directly enclosing loop. The com-
mand break n break out of n enclosing loops. The command continue 1

restarts the directly enclosing loop. The command continue n restarts the nth
enclosing loop.

(a) Extend the basic Hoare logic with breaks and continues to deal with addi-
tional parameter for the level of loop it applies to. Give rules for both while-do

and break n and continue n. [Hint: Consider extending the context to carry
multiple break and continue contexts for each level of loop.]

(b) Verify the following program with your extended logic

{true}
while true do
while true do
(x:=3; break 2)

{x = 3}

4

