Techniques for proving contextual equivalence

16/22

Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716): two mathematical objects are equal if there is no test to distinguish them.

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees)

$$\begin{pmatrix} \operatorname{let} a = \operatorname{ref} 0 \text{ in} \\ \operatorname{fun} x \rightarrow \\ a := ! a + x ; \\ ! a \end{pmatrix} = \begin{pmatrix} \operatorname{let} \\ a = \operatorname{ref} 0 \\ \operatorname{in} \\ \operatorname{fun} x \rightarrow \\ a := ! a + x ; \\ ! a \end{pmatrix}$$

12/22

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α -equivalence, $=_{\alpha}$).

$$\begin{pmatrix} \text{let } a = \text{ref } \mathbf{0} \text{ in} \\ \text{fun } x \rightarrow \\ a := ! a + x \text{ ;} \\ ! a \end{pmatrix} =_{\alpha} \begin{pmatrix} \text{let} \\ b = \text{ref } \mathbf{0} \\ \text{in} \\ \text{fun } y \rightarrow \\ b := ! b + y \text{ ;} \\ ! b \end{pmatrix}$$

E.g. definition & properties of OCaml typing relation $\Gamma \vdash M : \tau$ are simpler if we identify M up to $=_{\alpha}$.

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α -equivalence, $=_{\alpha}$).

So it pays to formulate program equivalences using mathematical notions that respect α -equivalence.

But filling holes in contexts does not respect $=_{\alpha}$:

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α -equivalence, $=_{\alpha}$).

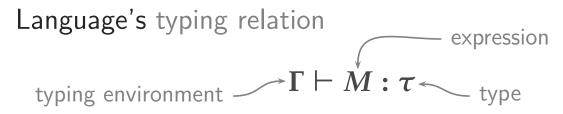
So it pays to formulate program equivalences using mathematical notions that respect α -equivalence.

But filling holes in contexts does not respect $=_{\alpha}$:

fun
$$x \to (-) =_{\alpha} \text{ fun } y \to (-)$$

and $x =_{\alpha} x$
but fun $x \to x \neq_{\alpha} \text{ fun } y \to x$

Expression relations



dictates the form of relations like contextual equivalence:

13/22

Expression relations

Language's typing relation

 $\Gamma \vdash M : \tau$

dictates the form of relations like contextual equivalence:

Define an expression relation to be any set \mathcal{E} of tuples (Γ, M, M', τ) satisfying:

 $(\Gamma \vdash M \ \mathcal{E} \ M' : \tau) \ \Rightarrow \ (\Gamma \vdash M : \tau) \ \& \ (\Gamma \vdash M' : \tau)$

Composition $\mathcal{E}_1, \mathcal{E}_2 \mapsto \mathcal{E}_1; \mathcal{E}_2$: $\frac{\Gamma \vdash M \ \mathcal{E}_1 \ M': \tau \qquad \Gamma \vdash M' \ \mathcal{E}_2 \ M'': \tau}{\Gamma \vdash M \ (\mathcal{E}_1; \mathcal{E}_2) \ M'': \tau}$

Reciprocation $\mathcal{E} \mapsto \mathcal{E}^{\circ}$:

$\frac{\Gamma \vdash M \ \mathcal{E} \ M' : \tau}{\Gamma \vdash M' \ \mathcal{E}^{\circ} \ M : \tau}$

Identity $\mathcal{I}d$:

$$\frac{\Gamma \vdash M : \tau}{\Gamma \vdash M \ \mathcal{I}d \ M : \tau}$$

14/22

Operations on expression relations

$$\begin{array}{l} \text{Compatible refinement } \mathcal{E} \mapsto \widehat{\mathcal{E}} : \\ \\ \frac{\Gamma \vdash M_1: \tau \to \tau' \qquad M_2: \tau}{\Gamma \vdash M_1 M_2: \tau'} \end{array}$$

Compatible refinement $\mathcal{E} \mapsto \widehat{\mathcal{E}}$:

$$\frac{\Gamma \vdash M_1 \mathrel{\mathcal{E}} M_1' : \tau \to \tau' \quad \Gamma \vdash M_2 \mathrel{\mathcal{E}} M_2' : \tau}{\Gamma \vdash M_1 M_2 \mathrel{\widehat{\mathcal{E}}} M_1' M_2' : \tau'}$$

14/22

Operations on expression relations

Compatible refinement
$$\mathcal{E} \mapsto \widehat{\mathcal{E}}$$
:

$$\frac{\Gamma \vdash M_1 \ \mathcal{E} \ M'_1 : \tau \to \tau' \qquad \Gamma \vdash M_2 \ \mathcal{E} \ M'_2 : \tau}{\Gamma \vdash M_1 \ M_2 \ \widehat{\mathcal{E}} \ M'_1 M'_2 : \tau'}$$

$$\frac{\Gamma, x : \tau \vdash M : \tau'}{\Gamma \vdash (\operatorname{fun} x \to M) : \tau \to \tau'}$$

Compatible refinement $\mathcal{E} \mapsto \widehat{\mathcal{E}}$:

$$\frac{\Gamma \vdash M_1 \mathrel{\mathcal{E}} M_1' : \tau \to \tau' \qquad \Gamma \vdash M_2 \mathrel{\mathcal{E}} M_2' : \tau}{\Gamma \vdash M_1 M_2 \mathrel{\widehat{\mathcal{E}}} M_1' M_2' : \tau'}$$

$$\Gamma \mathrel{\tau} \cdot \tau \vdash M \mathrel{\mathcal{E}} M' \cdot \tau'$$

$$\overline{\Gamma \vdash (\operatorname{fun} x o M) \ \widehat{\mathcal{E}} \ (\operatorname{fun} x o M') : au o au'}$$

14/22

Operations on expression relations

$$\begin{array}{l} \text{Compatible refinement } \mathcal{E} \mapsto \widehat{\mathcal{E}}: \\ \\ \underline{\Gamma \vdash M_1 \ \mathcal{E} \ M_1': \tau \to \tau' \qquad \Gamma \vdash M_2 \ \mathcal{E} \ M_2': \tau} \\ \hline \Gamma \vdash M_1 \ M_2 \ \widehat{\mathcal{E}} \ M_1' M_2': \tau' \\ \\ \hline \Gamma, x: \tau \vdash M \ \mathcal{E} \ M': \tau' \\ \hline \Gamma \vdash (\text{fun } x \to M) \ \widehat{\mathcal{E}} \ (\text{fun } x \to M'): \tau \to \tau' \\ \hline \Gamma \vdash M: \tau \\ \hline \Gamma \vdash \text{ref } M: \tau \text{ref} \end{array}$$

Compatible refinement $\mathcal{E} \mapsto \widehat{\mathcal{E}}$:

$$\begin{array}{l} \overline{\Gamma \vdash M_{1} \mathrel{\mathcal{E}} M_{1}': \tau \rightarrow \tau'} & \Gamma \vdash M_{2} \mathrel{\mathcal{E}} M_{2}': \tau \\ \hline \Gamma \vdash M_{1} M_{2} \mathrel{\widehat{\mathcal{E}}} M_{1}' M_{2}': \tau' \\ \hline \Gamma \restriction M_{1} x : \tau \vdash M \mathrel{\mathcal{E}} M': \tau' \\ \hline \Gamma \vdash (\operatorname{fun} x \rightarrow M) \mathrel{\widehat{\mathcal{E}}} (\operatorname{fun} x \rightarrow M'): \tau \rightarrow \tau' \\ \hline \Gamma \vdash M \mathrel{\mathcal{E}} M': \tau \\ \hline \Gamma \vdash \operatorname{ref} M \mathrel{\widehat{\mathcal{E}}} \operatorname{ref} M': \tau \operatorname{ref} \\ \end{array} \\ etc, etc (one rule for each typing rule) \end{array}$$

Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)] \cong_{ctx} (defined conventionally, using contexts) is the greatest compatible & adequate expression relation.

where an expression relation ${oldsymbol {\cal E}}$ is

 \blacktriangleright compatible if $\widehat{\mathcal{E}} \subseteq \mathcal{E}$

14/22

Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)]

 \cong_{ctx} (defined conventionally, using contexts) is the greatest compatible & adequate expression relation.

where an expression relation ${m {\cal E}}$ is

- hinspace compatible if $\widehat{\mathcal{E}}\subseteq \mathcal{E}$
- ▶ adequate if $\emptyset \vdash M \mathrel{\mathcal{E}} M'$: bool $\Rightarrow \forall s$. $(\exists s'. \langle s, M \rangle \rightarrow^* \langle s', \text{true} \rangle) \Leftrightarrow$

 $(\exists s''.\langle s, M' \rangle \rightarrow^* \langle s'', \text{true} \rangle)$

 $(\exists s''.\langle s, M' \rangle \rightarrow^* \langle s'', \text{true} \rangle)$

Precise definition varies according to the observational scenario. E.g. use "bisimulation" rather than "trace" based adequacy in presence of concurrency features.

15/22

Contextual equiv. without contexts

Definition

 \cong_{ctx} is the union of all expression relations that are compatible and adequate.

where an expression relation ${oldsymbol {\cal E}}$ is

- ${\scriptscriptstyle \blacktriangleright}$ compatible if $\widehat{\mathcal{E}}\subseteq \mathcal{E}$
- ► adequate if $\emptyset \vdash M \mathcal{E} M'$: bool $\Rightarrow \forall s$. $(\exists s'. \langle s, M \rangle \rightarrow^* \langle s', \text{true} \rangle) \Leftrightarrow$

So defined, \cong_{ctx} is also reflexive $(\mathcal{I}d \subseteq \mathcal{E})$, symmetric $(\mathcal{E}^{\circ} \subseteq \mathcal{E})$ and transitive $(\mathcal{E}; \mathcal{E} \subseteq \mathcal{E})$.

		sound	complete	useful	general	
	Brute force					
_	CIU					
_	Domains					
_	Games					
_	Logical relns					
	Bisimulations					
	Program logics					

sound: determines a compatible and adequate expression relation complete: characterises \cong_{ctx}

useful: for proving programming "laws" & PL correctness properties general: what PL features can be dealt with?

		sound	complete	useful	general
-	Brute force	+	+	—	(+)
-	CIU				
-	Domains				
-	Games				
-	Logical relns				
	Bisimulations				
	Program logics				

Brute force: sometimes compatible closure of $\{(M, M')\}$ is adequate, and hence $M \cong_{ctx} M'$. (E.g. [AMP + Shinwell, LMCS 4(1:4) 2008].)

		sound	complete	useful	general
	Brute force	+	+	—	(+)
-	CIU	+	+	—	+
-	Domains				
	Games				
-	Logical relns				
	Bisimulations				
	Program logics				

CIU: "Uses of Closed Instantiations" [Mason-Talcott et al].

Equates open expressions if their closures w.r.t. substitutions have same reduction behaviour w.r.t. any frame stack.

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+		—
Logical relns				
Bisimulations				
Program logics				

Domains: traditional denotational semantics.

Games: game semantics [Abramsky, Malacaria, Hyland, Ong,...]

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	±	
Logical reln	s +		+	
Bisimulation	ns			
Program log	gics			

Logical relations: type-directed analysis of \cong_{ctx} . At function types: relate functions if they send related arguments to related results.

Initially denotational [Plotkin,...], but now also operational [AMP, Birkedal-Harper-Crary, Ahmed, Johann-Voigtlaender,...].

	sound	complete	useful	general
Brute force	+	+		(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	±	
Logical relns	+		+	—
Bisimulations	+		+	+
Program logics				

Bisimulations—the legacy of concurrency theory:

2

$$egin{array}{c|c} M_1 & \sim & M \ r_1 & & & & \ M_1' & & & & \ \end{array}$$

17/22

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	\pm	
Logical relns	+	±	+	
Bisimulations	+		+	+
Program logics				

Bisimulations—the legacy of concurrency theory:

M_1	\sim	M_2
$T \bigvee$		$m{T}_{_{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$
M_1'	\sim	M_2'

(and symmetrically)

17/22

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	±	
Logical relns	+	<u>±</u>	+	—
Bisimulations	+	±	+	+
Program logics				

Bisimulations—the legacy of concurrency theory:

- applicative [Abramsky, Gordon, AMP]
- environmental [Pierce-Sumii-Koutavas-Wand]
- "up-to" techniques [Sangiorgi, Lassen]

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	±	
Logical relns	+		+	
Bisimulations	+		+	+
Program logics	+	+		—

Program logics—e.g. higher-order Hoare logic

[Berger-Honda-Yoshida]

Beyond universal identities.

17/22

	sound	complete	useful	general
Brute force	+	+	—	(+)
CIU	+	+	—	+
Domains	+	—	±	+
Games	+	+	±	
Logical relns	+	±	+	
Bisimulations	+	±	+	+
Program logics	+	+	\pm	—

Q: How do we make sense of all these techniques and results?

		sound	complete	useful	general
	Brute force	+	+	—	(+)
	CIU	+	+	—	+
-	Domains	+	—	±	+
	Games	+	+	±	
	Logical relns	+	±	+	
	Bisimulations	+		+	+
	Program logics	+	+		—

Q: How do we make sense of all these techniques and results?

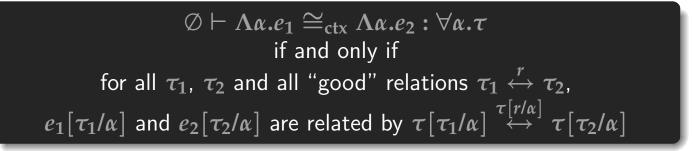
A: Category Theory can help!

For example...

17/22

Example

Relational parametricity is a tool for proving contextual equivalences between polymorphic programs:



Category theory guides us to

- "free theorems" via natural transformations [Wadler];
- universal properties of recursive datatypes: initial algebras / final coalgebras / Freyd's free dialgebras [Hasagawa et al].

Wise words

"But once feasibility has been checked by an operational model, operational reasoning should be immediately abandoned; it is essential that all subsequent reasoning, calculation and design should be conducted in each case at the highest possible level of abstraction."

Tony Hoare, Algebra and models. In *Computing Tomorrow. Future research directions in computer science*, Chapter 9, pp 158–187. (Cambridge University Press, 1996).

19/22

Conclusion

Operational models <u>can</u> support "reasoning, calculation and design" at a high level of abstraction—especially if we let Category Theory be our guide.

Research opportunities

The development of programming language theory based on contextual equivalences lags far behind the development of programming language design.

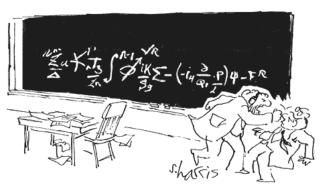
Type soundness results are two a penny, but correctness properties up to \cong_{ctx} are scarce (because they are hard!).

E.g. FP community is enthusiastically designing languages combining (higher rank) polymorphic types/kinds with recursively defined functions, datatypes, local state, subtyping,...

In many cases the relational parametricity properties of \cong_{ctx} are unknown.

Research opportunities

- The development of programming language theory based on contextual equivalences lags far behind the development of programming language design.
- Operationally-based work on programming language theory badly needs better tools for computer-aided proof.



"You want proof? I'll give you proof!"