Techniques

 for proving contextual equivalence
Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent ($\cong_{c t x}$) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646-1716):
two mathematical objects are equal
if there is no test to distinguish them.

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees)

$$
\left(\begin{array}{l}
\text { let } a=\operatorname{ref} 0 \text { in } \\
\text { fun } x \rightarrow \\
a:=!a+x ; \\
!a
\end{array}\right)=\left(\begin{array}{c}
\text { let } \\
a=\operatorname{ref} 0 \\
\text { in } \\
\text { fun } x \rightarrow \\
a:=!a+x ; \\
!a
\end{array}\right)
$$

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α-equivalence, $={ }_{\alpha}$).
$\left(\begin{array}{l}\text { let } a=\operatorname{ref} 0 \text { in } \\ \text { fun } x \rightarrow \\ a:=!a+x ; \\ !a\end{array}\right)={ }_{\alpha}\left(\begin{array}{c}\text { let } \\ b=\operatorname{ref} 0 \\ \text { in } \\ \text { fun } y \rightarrow \\ b:=!b+y ; \\ !b\end{array}\right)$
E.g. definition \& properties of OCaml typing relation $\Gamma \vdash M: \tau$ are simpler if we identify M up to $={ }_{\alpha}$.

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α-equivalence, $={ }_{\alpha}$).

So it pays to formulate program equivalences using mathematical notions that respect α-equivalence.
But filling holes in contexts does not respect $={ }_{\alpha}$:

Contexts are too concrete

The semantics of programs only depends on their abstract syntax (parse trees) modulo renaming of bound identifiers (α-equivalence, $={ }_{\alpha}$).

So it pays to formulate program equivalences using mathematical notions that respect α-equivalence.
But filling holes in contexts does not respect $={ }_{\alpha}$:

$$
\begin{aligned}
\quad \text { fun } x \rightarrow(-) & ={ }_{\alpha} \text { fun } y \rightarrow(-) \\
\text { and } & ={ }_{\alpha} \quad x \\
\text { but } \quad \text { fun } x \rightarrow x & F_{\alpha} \text { fun } y \rightarrow x
\end{aligned}
$$

Expression relations

Language's typing relation
dictates the form of relations like contextual equivalence:

Expression relations

Language's typing relation

$$
\Gamma \vdash M: \tau
$$

dictates the form of relations like contextual equivalence:
Define an expression relation to be any set \mathcal{E} of tuples ($\Gamma, M, M^{\prime}, \tau$) satisfying:
$\left(\Gamma \vdash M \mathcal{E} M^{\prime}: \tau\right) \Rightarrow(\Gamma \vdash M: \tau) \&\left(\Gamma \vdash M^{\prime}: \tau\right)$

Operations on expression relations
Composition $\mathcal{E}_{1}, \mathcal{E}_{2} \mapsto \mathcal{E}_{1} ; \mathcal{E}_{2}$:

$$
\frac{\Gamma \vdash M \mathcal{E}_{1} M^{\prime}: \tau \quad \Gamma \vdash M^{\prime} \mathcal{E}_{2} M^{\prime \prime}: \tau}{\Gamma \vdash M\left(\mathcal{E}_{1} ; \mathcal{E}_{2}\right) M^{\prime \prime}: \tau}
$$

Reciprocation $\mathcal{E} \longmapsto \mathcal{E}^{\circ}$:

$$
\frac{\Gamma \vdash M \mathcal{E} M^{\prime}: \tau}{\Gamma \vdash M^{\prime} \mathcal{E}^{\circ} M: \tau}
$$

Identity $\mathcal{I} d$:

$$
\frac{\Gamma \vdash M: \tau}{\Gamma \vdash M \mathcal{I} d M: \tau}
$$

Operations on expression relations

Compatible refinement $\mathcal{E} \longmapsto \widehat{\mathcal{E}}$:

$$
\frac{\Gamma \vdash M_{1}: \tau \longrightarrow \tau^{\prime} \quad M_{2}: \tau}{\Gamma \vdash M_{1} M_{2}: \tau^{\prime}}
$$

Operations on expression relations
Compatible refinement $\mathcal{E} \longmapsto \widehat{\mathcal{E}}$:

$$
\frac{\Gamma \vdash M_{1} \mathcal{E} M_{1}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2} \mathcal{E} M_{2}^{\prime}: \tau}{\Gamma \vdash M_{1} M_{2} \widehat{\mathcal{E}} M_{1}^{\prime} M_{2}^{\prime}: \tau^{\prime}}
$$

Operations on expression relations
Compatible refinement $\mathcal{E} \longmapsto \widehat{\mathcal{E}}$:

$$
\begin{gathered}
\Gamma \vdash M_{1} \mathcal{E} M_{1}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2} \mathcal{E} M_{2}^{\prime}: \tau \\
\Gamma \vdash M_{1} M_{2} \widehat{\mathcal{E}} M_{1}^{\prime} M_{2}^{\prime}: \tau^{\prime} \\
\frac{\Gamma, x: \tau \vdash M: \tau^{\prime}}{\Gamma \vdash(\operatorname{fun} x \rightarrow M): \tau \rightarrow \tau^{\prime}}
\end{gathered}
$$

Operations on expression relations
Compatible refinement $\mathcal{E} \longmapsto \widehat{\mathcal{E}}$:

$$
\begin{gathered}
\frac{\Gamma \vdash M_{1} \mathcal{E} M_{1}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2} \mathcal{E} M_{2}^{\prime}: \tau}{\Gamma \vdash M_{1} M_{2} \widehat{\mathcal{E}} M_{1}^{\prime} M_{2}^{\prime}: \tau^{\prime}} \\
\Gamma, x: \tau \vdash M \mathcal{E} M^{\prime}: \tau^{\prime} \\
\Gamma \vdash(\operatorname{fun} x \rightarrow M) \widehat{\mathcal{E}}\left(\operatorname{fun} x \rightarrow M^{\prime}\right): \tau \rightarrow \tau^{\prime}
\end{gathered}
$$

Operations on expression relations
Compatible refinement $\mathcal{E} \longmapsto \widehat{\mathcal{E}}$:

$$
\begin{gathered}
\frac{\Gamma \vdash M_{1} \mathcal{E} M_{1}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2} \mathcal{E} M_{2}^{\prime}: \tau}{\Gamma \vdash M_{1} M_{2} \widehat{\mathcal{E}} M_{1}^{\prime} M_{2}^{\prime}: \tau^{\prime}} \\
\overline{\Gamma \vdash\left(\operatorname{fun} x \rightarrow \tau \vdash M \mathcal{E} M^{\prime}: \tau^{\prime}\right.} \\
\frac{\Gamma \vdash M: \tau}{\Gamma \vdash \operatorname{ref} M: \tau \operatorname{ref}}
\end{gathered}
$$

Operations on expression relations

Compatible refinement $\mathcal{E} \mapsto \widehat{\mathcal{E}}$:

$$
\begin{gathered}
\frac{\Gamma \vdash M_{1} \mathcal{E} M_{1}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2} \mathcal{E} M_{2}^{\prime}: \tau}{\Gamma \vdash M_{1} M_{2} \widehat{\mathcal{E}} M_{1}^{\prime} M_{2}^{\prime}: \tau^{\prime}} \\
\overline{\Gamma \vdash\left(\mathrm { fun } x \rightarrow \tau \vdash M \mathcal { E } \left(\hat { \mathcal { E } } \left(\mathrm{fun} M^{\prime}: \tau^{\prime}\right.\right.\right.} \\
\frac{\left.\Gamma \vdash M M^{\prime}\right): \tau \rightarrow \tau^{\prime}}{\Gamma \vdash \operatorname{ref} M \widehat{\mathcal{E}} M^{\prime}: \tau} \\
\text { etcef } M^{\prime}: \tau \text { ref }
\end{gathered}
$$

Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)]
$\cong_{\text {ctx }}$ (defined conventionally, using contexts) is the greatest compatible \& adequate expression relation.
where an expression relation \mathcal{E} is
. compatible if $\widehat{\mathcal{E}} \subseteq \mathcal{E}$

Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)]
$\cong_{\text {ctx }}$ (defined conventionally, using contexts) is the greatest compatible \& adequate expression relation.
where an expression relation \mathcal{E} is
. compatible if $\widehat{\mathcal{E}} \subseteq \mathcal{E}$

- adequate if $\varnothing \vdash \boldsymbol{M} \mathcal{E} \boldsymbol{M}^{\prime}$: bool $\Rightarrow \forall s$.
$\left(\exists s^{\prime} \cdot\langle s, M\rangle \rightarrow^{*}\left\langle s^{\prime}\right.\right.$, true $\left.\rangle\right) \Leftrightarrow$
$\left(\exists s^{\prime \prime} \cdot\left\langle s, M^{\prime}\right\rangle \rightarrow^{*}\left\langle s^{\prime \prime}\right.\right.$, true $\left.\rangle\right)$

Precise definition varies according to the observational scenario. E.g. use "bisimulation" rather than "trace" based adequacy in presence of concurrency features.

Contextual equiv. without contexts

Definition

$\cong_{\text {ctx }}$ is the union of all expression relations that are compatible and adequate.
where an expression relation \mathcal{E} is
. compatible if $\widehat{\mathcal{E}} \subseteq \mathcal{E}$

- adequate if $\varnothing \vdash M \mathcal{E} M^{\prime}$: bool $\Rightarrow \forall s$.

$$
\begin{aligned}
& \left(\exists s^{\prime} \cdot\langle s, M\rangle \rightarrow^{*}\left\langle s^{\prime}, \text { true }\right\rangle\right) \Leftrightarrow \\
& \left(\exists s^{\prime \prime} .\left\langle s, M^{\prime}\right\rangle \rightarrow^{*}\left\langle s^{\prime \prime}, \text { true }\right\rangle\right)
\end{aligned}
$$

So defined, $\cong_{c t x}$ is also reflexive $(\mathcal{I} d \subseteq \mathcal{E})$, symmetric $\left(\mathcal{E}^{\circ} \subseteq \mathcal{E}\right)$ and transitive $(\mathcal{E} ; \mathcal{E} \subseteq \mathcal{E})$.

	sound	complete	useful	general
Brute force				
CIU				
Domains				
Games				
Logical relns				
Bisimulations				
Program logics				

sound: determines a compatible and adequate expression relation complete: characterises $\cong_{\text {ctx }}$
useful: for proving programming "laws" \& PL correctness properties general: what PL features can be dealt with?

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU				
Domains				
Games				
Logical relns				
Bisimulations				
Program logics				

Brute force: sometimes compatible closure of $\left\{\left(M, M^{\prime}\right)\right\}$ is adequate, and hence $M \cong_{\operatorname{ctx}} M^{\prime}$.
(E.g. [AMP + Shinwell, LMCS 4(1:4) 2008].)

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains				
Games				
Logical relns				
Bisimulations				
Program logics				

CIU: "Uses of Closed Instantiations" [Mason-Talcott et al].

Equates open expressions if their closures w.r.t. substitutions have same reduction behaviour w.r.t. any frame stack.

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns				
Bisimulations				
Program logics				

Domains: traditional denotational semantics.

Games: game semantics [Abramsky, Malacaria, Hyland, Ong,...]

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations				
Program logics				

Logical relations: type-directed analysis of $\cong_{\text {ctx }}$. At function types: relate functions if they send related arguments to related results.

Initially denotational [Plotkin,...], but now also operational [AMP, Birkedal-Harper-Crary, Ahmed, Johann-Voigtlaender,...].

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics				

Bisimulations-the legacy of concurrency theory:
M_{1}
$\sim M_{2}$
${ }^{T}$
M_{1}^{\prime}

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics				

Bisimulations-the legacy of concurrency theory:

M_{1}	\sim	M_{2}
T_{\downarrow}		(and symmetrically)
M_{1}^{\prime}	\sim	
T_{V}^{\prime}		

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics				

Bisimulations-the legacy of concurrency theory:
applicative [Abramsky, Gordon, AMP]

- environmental [Pierce-Sumii-Koutavas-Wand]
"up-to" techniques [Sangiorgi, Lassen]

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics	+	+	\pm	-

Program logics-e.g. higher-order Hoare logic [Berger-Honda-Yoshida]

Beyond universal identities.

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics	+	+	\pm	-

Q: How do we make sense of all these techniques and results?

	sound	complete	useful	general
Brute force	+	+	-	$(+)$
CIU	+	+	-	+
Domains	+	-	\pm	+
Games	+	+	\pm	-
Logical relns	+	\pm	+	-
Bisimulations	+	\pm	+	+
Program logics	+	+	\pm	-

Q: How do we make sense of all these techniques and results?

A: Category Theory can help!

For example...

Example

Relational parametricity is a tool for proving contextual equivalences between polymorphic programs:

$$
\begin{gathered}
\varnothing \vdash \Lambda \alpha \cdot e_{1} \cong \operatorname{ctx} \Lambda \alpha \cdot e_{2}: \forall \alpha \cdot \tau \\
\text { if and only if } \\
\text { for all } \tau_{1}, \tau_{2} \text { and all "good" relations } \tau_{1} \stackrel{r}{\longleftrightarrow} \tau_{2}, \\
e_{1}\left[\tau_{1} / \alpha\right] \text { and } e_{2}\left[\tau_{2} / \alpha\right] \text { are related by } \tau\left[\tau_{1} / \alpha\right] \stackrel{\tau[r / \alpha]}{\leftrightarrows} \tau\left[\tau_{2} / \alpha\right]
\end{gathered}
$$

Category theory guides us to
"free theorems" via natural transformations [Wadler]; universal properties of recursive datatypes: initial algebras / final coalgebras / Freyd's free dialgebras [Hasagawa et al].

Wise words

"But once feasibility has been checked by an operational model, operational reasoning should be immediately abandoned; it is essential that all subsequent reasoning, calculation and design should be conducted in each case at the highest possible level of abstraction."

Tony Hoare, Algebra and models. In Computing Tomorrow. Future research directions in computer science, Chapter 9, pp 158-187.
(Cambridge University Press, 1996).

Conclusion

Operational models can support "reasoning, calculation and design" at a high level of abstraction-especially if we let Category Theory be our guide.

Research opportunities

The development of programming language theory based on contextual equivalences lags far behind the development of programming language design.

Type soundness results are two a penny, but correctness properties up to $\cong_{\text {ctx }}$ are scarce (because they are hard!).
E.g. FP community is enthusiastically designing languages combining (higher rank) polymorphic types/kinds with recursively defined functions, datatypes, local state, subtyping,...
In many cases the relational parametricity properties of $\cong_{\text {ctx }}$ are unknown.

Research opportunities

The development of programming language theory based on contextual equivalences lags far behind the development of programming language design.

Operationally-based work on programming language theory badly needs better tools for computer-aided proof.

"You want proof? I'll give you proof!"

