Constructions on domains

ACS L16, lecture 10

Lifting and unlifting

Lift of a cpo D is the domain

 $D_{\perp} riangleq D \cup \{ot\}$

where \perp is some element not in D and the partially order on D_{\perp} is $\sqsubseteq_D \cup \{(\perp, x) \mid x \in D_{\perp}\}$.

Lifting and unlifting

Lift of a cpo D is the domain

 $D_{\perp} riangleq D \cup \{ot\}$

where \perp is some element not in D and the partially order on D_{\perp} is $\sqsubseteq_D \cup \{(\perp, x) \mid x \in D_{\perp}\}$. Unlift of a domain D is the cpo

$$D_{\downarrow} \triangleq \{ d \in D \mid d \neq \bot \}$$

with partial order as for D.

ACS L16, lecture 10

Discrete cpos and flat domains

The discrete cpo on a set S is given by the partial order

$$x \sqsubseteq_S x' \triangleq x = x'$$
 (all $x, x' \in S$)

Flat domains S_{\perp} are the lifts of discrete cpos.

Products

The product of two cpos (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

 $D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2 \}$

and partial order **_** defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \triangleq d_1 \sqsubseteq_1 d'_1 \& d_2 \sqsubseteq_2 d'_2$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j})$$

ACS L16, lecture 10

Products

The product of two cpos (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2\}$$

and partial order \sqsubseteq defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \triangleq d_1 \sqsubseteq_1 d_1' \& d_2 \sqsubseteq_2 d_2'$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j})$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \bigsqcup)$ and $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$.

Smash product and coalesced sum

Smash product of domains *D* and *E*:

$$D\otimes E\ \triangleq\ (D_{\downarrow} imes E_{\downarrow})_{\perp}$$

strict continuous functions $D \otimes E \longrightarrow F$ are in bijection with continuous functions $f: D \times E \longrightarrow F$ that are <u>strict in each variable separately</u> $f(\bot, e) = \bot \qquad f(d, \bot) = \bot$ $(all \ e \in E, \ d \in D)$

ACS L16, lecture 10

Smash product and coalesced sum

Smash product of domains *D* and *E*:

$$D\otimes E \triangleq (D_{\downarrow} \times E_{\downarrow})_{\perp}$$

Coalesced sum of domains D and E:

$$D \oplus E \triangleq (D_{\downarrow} \uplus E_{\downarrow})_{\perp}$$

(is the coproduct in the category of domains & strict ctr fns)

(Disjoint union of two sets X and Y:

 $X \uplus Y \triangleq \{(0,x) \mid x \in X\} \cup \{(1,y) \mid y \in Y\}$

is the coproduct of X and Y in the category of sets and functions.) ACS L16, lecture 10

Function cpos and domains

Given cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set

 $D \rightarrow E \triangleq \{f \mid f : D \rightarrow E \text{ is a continuous function}\}$

and partial order: $f \sqsubseteq f' \triangleq \forall d \in D.f(d) \sqsubseteq_E f'(d)$. Lubs of chains are calculated 'argumentwise' (using lubs in *E*):

$$(\bigsqcup_{n\geq 0}f_n)(d)=\bigsqcup_{n\geq 0}f_n(d)$$

ACS L16, lecture 10

Function cpos and domains

Given cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set

 $D \to E \triangleq \{f \mid f: D \to E \text{ is a continuous function}\}$

and partial order: $f \sqsubseteq f' \triangleq \forall d \in D.f(d) \sqsubseteq_E f'(d)$. Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$(\bigsqcup_{n\geq 0}f_n)(d)=\bigsqcup_{n\geq 0}f_n(d)$$

If *E* is a domain, then so is $D \to E$: $\bot_{D \to E}$ is the constant function mapping each $d \in D$ to \bot_E .

ACS L16, lecture 10

Domain of strict functions

Given domains D and E we get a domain

$D \multimap E \triangleq \{f \in (D \to E) \mid f(\perp_D) = \perp_E\}$

with partial order, lubs of chains and least element as for $D \rightarrow E$.

ACS L16, lecture 10

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}, (-) \times (-), (-) \otimes (-), (-) \oplus (-), (-) \rightarrow (-)$ and $(-) \rightarrow (-)$. E.g. $\Phi(X) \triangleq (X \rightarrow X)$

or $\overline{\mathbb{Q}}(X) \stackrel{\triangle}{=} (\mathbb{Z}_{1} \stackrel{\frown}{\to} X) \rightarrow (\mathbb{Z}_{1} \otimes (\mathbb{Z}_{1} \stackrel{\frown}{\to} X))$

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}, (-) \times (-), (-) \otimes (-), (-) \oplus (-), (-) \to (-)$ and $(-) \multimap (-)$.

Aim to show that every domain equation has a solution

$$D \cong \Phi(D)$$

that is minimal is a sense to be explained.

ACS L16, lecture 10

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}, (-) \times (-), (-) \otimes (-), (-) \oplus (-), (-) \to (-)$ and (-) - (-).

Aim to show that every domain equation has a solution

All to show that evely $D \cong \Phi(D)$ the domain obtained by that is minimal is a sense to be explained. If $\Phi(X)$ by D

(in the category of domains & cts functions) ACS L16, lecture 10

Example
Denotational semantics of call-by-name
$$\lambda$$
-calculus
 λ -Terms $e \in \Lambda := x$ ($x \in V$)
 $| \lambda x \cdot e$
 $| ee$
Call-by-name evaluation relation $e \Rightarrow c$
between closed terms e, c is inductively
generated by
 $| \lambda x \cdot e = c$
 $| e = c$

Suppose given $\{ \text{domain } D \\ \text{isomorphism } i : (D \rightarrow D)_{\perp} \cong D \}$ Using i, define continuous functions fun $:(D \rightarrow D) \longrightarrow D$ $f \longmapsto i(f)$ $app : D \times D \longrightarrow D$ $(d,d') \longmapsto \begin{cases} i(d)d' & \text{if } i'(d) \neq \bot \\ \bot & \text{if } i'(d) = \bot \end{cases}$ Note that $app(fun(f),d) = i^{-1}(i(f))d = f(d)$

Denotation of λ -Terms $\mathbb{L}e \mathbb{I}_{p_{\pi}} \in \mathbb{D}$ X-term eEA environment PED defined by recursion on the structure of e: $[x]\rho = \rho(x)$ $[\lambda x.e] \rho = fun(d \in D \mapsto [e](\rho[x \mapsto d]))$ $\mathbb{L}eelp = app(\mathbb{L}elp, \mathbb{L}e'lp)$ updated environment, maps >c to d and otherwise acts like p

E.g.
$$[\lambda x.x]p = fun(d \mapsto [x](p[x \mapsto d]))$$

= fun(id_D)

and so

$$\begin{bmatrix} \lambda y \cdot (\lambda x \cdot x) y \end{bmatrix} \rho \\= \operatorname{fun}(d \mapsto \mathbb{I}(\lambda x \cdot x) y \mathbb{I}(\rho[y \mapsto d])) \\= \operatorname{fun}(d \mapsto \operatorname{app}(\operatorname{fun}(\operatorname{id}_{\mathcal{D}}), d)) \\= \operatorname{fun}(\operatorname{id}_{\mathcal{D}}) \\= \mathbb{I} \lambda y \cdot y \mathbb{I} \rho$$