Constructions on domains

Lifting and unlifting

Lift of a cpo D is the domain

$$
D_{\perp} \triangleq D \cup\{\perp\}
$$

where \perp is some element not in D and the partially order on D_{\perp} is $\sqsubseteq_{D} \cup\left\{(\perp, x) \mid x \in D_{\perp}\right\}$.

Lifting and unlifting

Lift of a cpo D is the domain

$$
D_{\perp} \triangleq D \cup\{\perp\}
$$

where \perp is some element not in D and the partially order on D_{\perp} is $\sqsubseteq_{D} \cup\left\{(\perp, x) \mid x \in D_{\perp}\right\}$.
Unlift of a domain D is the cpo

$$
D_{\downarrow} \triangleq\{d \in D \mid d \neq \perp\}
$$

with partial order as for D.

Discrete cpos and flat domains

The discrete cpo on a set S is given by the partial order

$$
x \sqsubseteq_{S} x^{\prime} \triangleq x=x^{\prime} \quad\left(\text { all } x, x^{\prime} \in S\right)
$$

Flat domains S_{\perp} are the lifts of discrete cpos.

Products

The product of two cpos (D_{1}, \sqsubseteq_{1}) and (D_{2}, \sqsubseteq_{2}) has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \triangleq d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime}
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i} \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

Products

The product of two cpos (D_{1}, \sqsubseteq_{1}) and (D_{2}, \sqsubseteq_{2}) has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \triangleq d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime}
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i} \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and (D_{2}, \sqsubseteq_{2}) are domains so is
$\left(D_{1} \times D_{2}, \sqsubseteq\right)$ and $\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)$.

Smash product and coalesced sum
Smash product of domains D and E :

$$
D \otimes E \triangleq\left(D_{\downarrow} \times E_{\downarrow}\right)_{\perp}
$$

strict continuous functions $D \otimes E \longrightarrow F$ are in bijection with
continuous functions $f: D \times E \rightarrow F$ that are strict in each variable separately

$$
\begin{gathered}
f(\perp, e)=\perp \quad f(d, \perp)=1 \\
(\text { all } e \in E, d \in D)
\end{gathered}
$$

Smash product and coalesced sum
Smash product of domains D and E :

$$
D \otimes E \triangleq\left(D_{\downarrow} \times E_{\downarrow}\right)_{\perp}
$$

Coalesced sum of domains D and E :

$$
D \oplus E \triangleq\left(D_{\downarrow} \uplus E_{\downarrow}\right)_{\perp}
$$

(is the coproduct in the category of Domains \&strict cts fins)
(Disjoint union of two sets X and Y :

$$
X \uplus Y \triangleq\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}
$$

is the coproduct of X and Y in the category of sets and functions.)

Function cpos and domains

Given cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ($D \rightarrow E$, \sqsubseteq) has underlying set
$D \rightarrow E \triangleq\{f \mid f: D \rightarrow E$ is a continuous function $\}$ and partial order: $f \sqsubseteq f^{\prime} \triangleq \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$. Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$
\left(\bigsqcup_{n \geq 0} f_{n}\right)(d)=\bigsqcup_{n \geq 0} f_{n}(d)
$$

Function cpos and domains

Given cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \coprod_{E}\right)$, the function cpo ($D \rightarrow E$, \sqsubseteq) has underlying set
$D \rightarrow E \triangleq\{f \mid f: D \rightarrow E$ is a continuous function $\}$ and partial order: $f \sqsubseteq f^{\prime} \triangleq \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$. Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$
\left(\bigsqcup_{n \geq 0} f_{n}\right)(d)=\bigsqcup_{n \geq 0} f_{n}(d)
$$

If E is a domain, then so is $D \rightarrow E: \perp_{D \rightarrow E}$ is the constant function mapping each $d \in D$ to \perp_{E}.

Domain of strict functions

Given domains D and E we get a domain

$$
D \multimap E \triangleq\left\{f \in(D \rightarrow E) \mid f\left(\perp_{D}\right)=\perp_{E}\right\}
$$

with partial order, labs of chains and least element as for $D \rightarrow E$.

Domain equations

$X \cong \Phi(X)$

where $\boldsymbol{\Phi}(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp},(-) \times(-),(-) \otimes(-),(-) \oplus(-),(-) \rightarrow(-)$ and $(-) \multimap(-)$.

Egg

$$
\Phi(x) \triangleq(X \rightarrow X)_{\perp}
$$

$$
\text { or } \Phi(X) \triangleq\left(\mathbb{Z}_{\perp} \multimap X\right) \rightarrow\left(\mathbb{Z}_{\perp} \otimes\left(\mathbb{Z}_{\perp} \odot X\right)\right)
$$

Domain equations

$X \cong \Phi(X)$

where $\boldsymbol{\Phi}(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp},(-) \times(-),(-) \otimes(-),(-) \oplus(-),(-) \rightarrow(-)$ and $(-) \multimap(-)$.

Aim to show that every domain equation has a solution

$$
D \cong \Phi(D)
$$

that is minimal is a sense to be explained.

Domain equations

$X \cong \Phi(X)$

where $\boldsymbol{\Phi}(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp},(-) \times(-),(-) \otimes(-),(-) \oplus(-),(-) \rightarrow(-)$ and $(-) \multimap(-)$.

Aim to show that every domain equation has a solution

$$
D \cong \Phi \begin{aligned}
& \text { the domain } \\
& \text { obtained by }
\end{aligned}
$$

that is minimal is a sense to be explained.

Example
Denotational semantics of call-by-name λ-calculus

Call-by-name evaluation relation $e \rightarrow c$ between closed terms e, c is inductively generated by

$$
\begin{array}{l|l|}
\hline \lambda x \cdot e \Rightarrow \lambda x \cdot e & \begin{array}{c}
e_{1} \Rightarrow \lambda x \cdot e ~ \\
\left.e_{1} e_{2} \Rightarrow e_{2} / x\right] \Rightarrow c \\
\text { Substitution }
\end{array} \\
\hline
\end{array}
$$

Suppose given $\left\{\begin{array}{l}\text { domain } D \\ \text { isomorphism }\end{array}:(D \rightarrow D)_{\perp} \cong D\right.$
Using i, define continuous functions
fun: $(D \rightarrow D) \longrightarrow D$
$f \longmapsto i(f)$
app: $D \times D \rightarrow D$

$$
\begin{aligned}
& D \times D \rightarrow D \\
& \left(d, d^{\prime}\right) \mapsto\left\{\begin{array}{cc}
i^{-1}(d) d^{\prime} & \text { if } i^{-1}(d) \neq \perp \\
\perp & \text { if } i^{-1}(d)=1
\end{array}\right.
\end{aligned}
$$

Note that

$$
\operatorname{app}(\operatorname{fun}(f), d)=i^{-1}(i(f)) d=f(d)
$$

Using i, define continuous functions
fun $:(D \rightarrow D) \longrightarrow D$
$f \longmapsto i(f)$
app: $D \times D \rightarrow D$

$$
\begin{aligned}
& D \times D \rightarrow D \\
& \left(d, d^{\prime}\right) \longmapsto\left\{\begin{array}{cc}
i^{-1}(d) d^{\prime} & \text { if } i^{-1}(d) \neq 1 \\
\perp & \text { if } i^{-1}(d)=1
\end{array}\right.
\end{aligned}
$$

Define a domain of environments:

$$
E n v \triangleq D^{v} \quad(\text { countable product of } D)
$$

Denotation of λ-Terms

$$
\left[e \mathbb{e} \rho_{1} \in D\right.
$$

λ-term $e \in \Lambda$ environment $\rho \in D^{V}$ defined by recursion on the structure of e :

- $\llbracket x \rrbracket \rho=\rho(x)$
- $\llbracket \lambda x . e \rrbracket \rho=\operatorname{fun}(d \in D \mapsto \llbracket e \rrbracket(\rho[x \mapsto d]))$
- $\mathbb{E} e e^{\prime} \rrbracket \rho=\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right)$

Denotation of λ-Terms

$$
\mathbb{~} e \mathbb{I} \rho_{\pi} \in D
$$

x-term ce Λ environment $p \in D^{\nu}$ defined by recession on the structure of e :

- $\llbracket x \rrbracket \rho=\rho(x)$
- $\llbracket \lambda x \cdot e \rrbracket \rho=\operatorname{fun}(d \in D \mapsto \llbracket e \rrbracket(\rho[x \mapsto d]))$
- $\mathbb{e} e^{\prime} \rrbracket \rho=\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right)$
updated environment, maps x to d and other wise acts like ρ
E.g.

$$
\begin{aligned}
\llbracket \lambda x \cdot x] \rho & =\text { fun }(d \mapsto \mathbb{C} x](\rho[x \mapsto d])) \\
& =\text { fun }\left(i d_{D}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& {[\lambda y \cdot(\lambda x \cdot x) y \rrbracket \rho} \\
& =\operatorname{fun}(d \mapsto \mathbb{[}(\lambda x-x) y \rrbracket(\rho[y \mapsto d])) \\
& =\operatorname{fun}\left(d \mapsto \operatorname{app}\left(f_{u n}\left(i d_{D}\right), d\right)\right) \\
& =\operatorname{fun}\left(i d_{D}\right) \\
& =\mathbb{C} \lambda y \cdot y \rrbracket \rho
\end{aligned}
$$

