Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is

- reflexive: $d \sqsubseteq d$
- transitive: $d \sqsubseteq d' \sqsubseteq d'' \supset d \sqsubseteq d''$
- anti-symmetric: $d \sqsubseteq d' \sqsubseteq d \supset d = d'$.

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

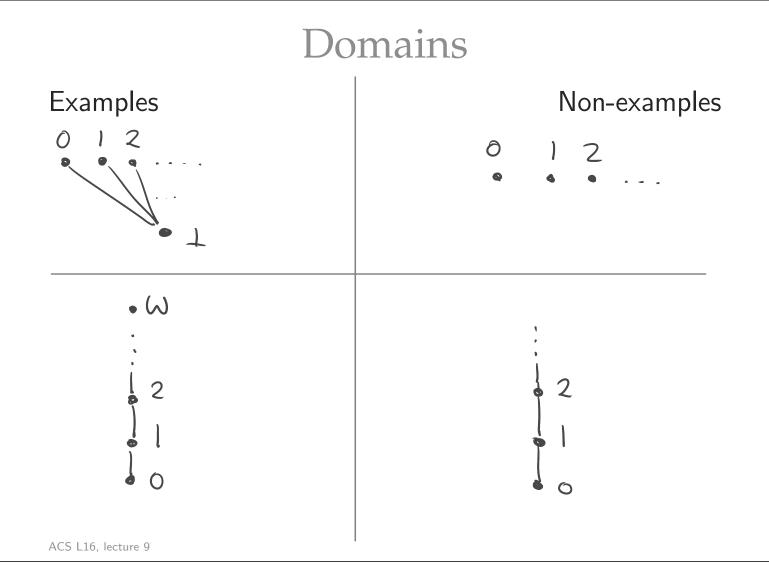
ACS L16, lecture 9

Cpo's and domains

A(n ω -)chain complete poset, or (ω -)cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \ge 0} d_n$:

$$\forall m \ge \mathbf{0} \, . \, d_m \sqsubseteq \bigsqcup_{n \ge 0} d_n$$
$$\forall d \in D \, . \, (\forall m \ge \mathbf{0} \, . \, d_m \sqsubseteq d) \supset \bigsqcup_{n \ge 0} d_n \sqsubseteq d$$

A domain is a cpo that possesses a least element, \bot : $\forall d \in D . \bot \Box d$



Partial functions

The set $X \rightarrow Y$ of partial functions from a set X to a set Y is a domain with

- Partial order: $f \sqsubseteq g$ iff $dom(f) \subseteq dom(g)$ and $\forall x \in dom(f)$. f(x) = g(x).
- Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \ge 0} dom(f_n)$ and

 $f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n) \text{ for some } n \\ \text{undefined otherwise} \end{cases}$

• Least element \perp = totally undefined partial function.

Monotonicity, continuity, strictness

- A function $f: D \to E$ between posets is monotone iff $\forall d, d' \in D. \ d \sqsubseteq d' \supset f(d) \sqsubseteq f(d').$
- If D and E are cpos, the function f is continuous iff it is monotone and preserves lubs of chains, i.e. for all chains d₀ ⊆ d₁ ⊆ ... in D, it is the case that

$$f(\bigsqcup_{n\geq 0}d_n)=\bigsqcup_{n\geq 0}f(d_n)$$
 in E

• If D and E have least elements, then the function f is strict iff $f(\perp) = \perp$.

ACS L16, lecture 9

Least pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written fix(f). It is thus (uniquely) specified by the two properties:

$f(fix(f)) \sqsubseteq fix(f)$ $\forall d \in D. f(d) \sqsubseteq d \supset fix(f) \sqsubseteq d$

These imply that fix(f) is a fixed point of f, that is,

$$f(fix(f)) = fix(f)$$

Tarski's Fixed Point Theorem

Let $f : D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n\geq 0} f^n(\bot)$$

ACS L16, lecture 9

Tarski's Fixed Point Theorem

Let $f : D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$$

Proof. By continuity of f, $f(\bigsqcup_{n\geq 0} f^n(\bot)) = \bigsqcup_{n\geq 0} f(f^n(\bot)) = \bigsqcup_{n\geq 0} f^{n+1}(\bot) = \bigsqcup_{n\geq 1} f^n(\bot) = \bigsqcup_{n\geq 0} f^n(\bot)$; and if $f(d) \sqsubseteq d$, then

• $f^0(\bot) = \bot \sqsubseteq d$

• $f^n(\perp) \sqsubseteq d$ implies $f^{n+1}(\perp) = f(f^n(\perp)) \sqsubseteq f(d) \sqsubseteq d$

so $\bigsqcup_{n\geq 0} f^n(\bot) \sqsubseteq d$.

ACS L16, lecture 9

Plotkin's Uniformity Principle

Suppose μ is an operation assigning to each domain Dand continuous function $f: D \to D$ an element $\mu_D(f) \in D$. Then $\mu = fix$ if and only if μ satisfies properties (F) and (U).

(F)
$$f(\mu_D(f)) = \mu_D(f)$$

 $D \xrightarrow{s} D'$
(U) If $f | \qquad | f' \text{ commutes (i.e. } f' \circ s = s \circ f)$
 $D \xrightarrow{s} D'$
with f, f', s continuous and $s \text{ strict,}$
then $s(\mu_D(f)) = \mu_{D'}(f')$.

ACS L16, lecture 9

$$\mu = f_{i\times} \supset \mu \text{ satisfies } (F)g(U)$$

$$(F) = \text{least pre-fixed points are fixed points.}$$

$$(u):$$

$$s(f_{i\times}(f)) = S(\bigcup_{n \ge 0} f^{n}(\bot))$$

$$= \bigcup_{n \ge 0} s(f^{n}(\bot)) \text{ since } s \text{ continuous}$$

$$= \bigcup_{n \ge 0} (f')^{n}(s(\bot)) \text{ since } s \cdot f = f' \cdot s$$

$$= \bigcup_{n \ge 0} (f')^{n}(\bot) \text{ since } s \cdot f = f' \cdot s$$

$$= f_{i\times}(f')$$

 μ satisfies (F)&(U) $\supset \mu = fix$

Let Ω be the domain $\{0 \leq 1 \leq 2 \leq \dots \leq \omega\}$ and $s: \Omega \rightarrow \Omega$ the continuous function $\int S(n) = n+1$ $\int S(w) = w$

 $\underbrace{NB}_{W} \quad \text{wisthe unique fixed point of } S, \text{ so by (F)}_{W} \\ \text{we must have } \mu_{\Omega}(s) = w.$

 μ satisfies (F) $g(\mu) \supset \mu = fix$ Given any continuous $f: D \rightarrow D$, define a strict continuous function $\hat{f}: \Omega \rightarrow D$ by $\int \hat{f}(n) = f^{n}(\bot)$ $\langle \hat{f}(\omega) = fix(f).$ Thus $s \downarrow f$ commutes, so by (11) we have $s \downarrow f$ D $\mu_{\mathsf{D}}(f) = \widehat{f}(\mu_{\mathcal{D}}(s)) = \widehat{f}(\omega) = fix(f)$