
Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

ACS L16, lecture 2 4/10

Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

ACS L16, lecture 2 4/10

Contextual preorder / equivalence

Given e1, e2 ∈ Progty , define

e1 =ctx e2 : ty � e1 ≤ctx e2 : ty & e2 ≤ctx e1 : ty

e1 ≤ctx e2 : ty � ∀x , e, ty ′, s . (x : ty � e : ty ′) &

s, e[e1/x]⇓ ⊃ s, e[e2/x]⇓

where s, e⇓ indicates termination:

s, e⇓ � ∃s′, v (s, e ⇒ v, s′)

Other natural choices of what to observe apart from termination do not change=ctx.

10

Definition of ⇓ is not syntax-directed

E.g.
s′, e2[v1/x]⇓

s, let x = e1 in e2 ⇓
if s, e1 ⇒ v1, s

′

but e2[v1/x] is not built from subphrases of let x = e1 in e2.

Simple example of the difficulty this causes: consider a divergent integer

expression ⊥ � (fun f = (x : int) -> f x) 0.

It satisfies ⊥ ≤ctx n : int, for any n ∈ Progint
Obvious strategy for proving this is to try to show

s, e⇓ ⊃ ∀x , e′. e = e′[⊥/x] ⊃ s, e′[n/x]⇓

by induction on the derivation of s, e⇓. But the induction steps are hard

to carry out because of the above problem.

11

Felleisen-style presentation of→

Lemma. (s , e) → (s′ , e′) holds iff e = E[r] and e′ = E[r′] for
some evaluation context E and basic reduction (s , r) → (s′ , r′).

Evaluation contexts are closed contexts that want to evaluate their hole

(E ::= − | E e | v E | let x = E in e | · · ·).

E[r] denotes the expression resulting from replacing the ‘hole’ [−] in E
by the expression r.

Basic reductions (s , r) → (s′ , r′) are the axioms in the inductive

definition of → à la Plotkin—see Sect. A.5.

13

Fact. Every closed expression not in canonical form is uniquely of the

form E[r] for some evaluation context E and redex r.

Fact. Every evaluation context E is a composition

F1[F2[· · · Fn[−] · · ·]] of basic evaluation contexts, or evaluation

frames.

Hence can reformulate transitions between configurations

(s , e) = (s , F1[F2[· · · Fn[r] · · ·]]) in terms of transitions

between configurations of the form

〈s , Fs , r〉

whereFs is a list of evaluation frames—the frame stack.

14

An ML abstract machine

Transitions

〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉

⎧⎪⎨
⎪⎩

s, s
′ = states

Fs,Fs′ = frame stacks

e, e
′ = closed expressions

defined by cases (i.e. no induction), according to the structure of e and

(then)Fs , for example:

〈s , Fs , let x = e1 in e2〉 →
〈s , Fs ◦ (let x = [−] in e2) , e1〉

〈s , Fs ◦ (let x = [−] in e) , v〉 → 〈s , Fs , e[v/x]〉

(See Sect. A.6 for the full definition.)

Initial configurations: 〈s , Id , e〉
terminal configurations: 〈s , Id , v〉
(Id the empty frame stack, v a closed canonical form).

15

Theorem. 〈s , Fs , e〉 →∗ 〈s′ , Id , v〉 iff s,Fs[e] ⇒ v, s′.

where

{
Id [e] � e

(Fs ◦ F)[e] � Fs[F [e]].

Hence: s, e⇓ iff ∃s′, v (〈s , Id , e〉 →∗ 〈s′ , Id , v〉).

So we can express termination of evaluation in terms of termination of

the abstract machine. The gain is the following simple, but key,

observation:

↘ �

{
〈s , Fs , e〉 | ∃s′, v

(
〈s , Fs , e〉 →∗ 〈s′ , Id , v〉

) }
has a direct, inductive definition following the structure of e and Fs—see

Sect. A.7.

16

Theorem. 〈s , Fs , e〉 →∗ 〈s′ , Id , v〉 iff s,Fs[e] ⇒ v, s′.

where

{
Id [e] � e

(Fs ◦ F)[e] � Fs[F [e]].

Hence: s, e⇓ iff ∃s′, v (〈s , Id , e〉 →∗ 〈s′ , Id , v〉).

So we can express termination of evaluation in terms of termination of

the abstract machine. The gain is the following simple, but key,

observation:

↘ �

{
〈s , Fs , e〉 | ∃s′, v

(
〈s , Fs , e〉 →∗ 〈s′ , Id , v〉

) }
has a direct, inductive definition following the structure of e and Fs—see

Sect. A.7.

16

The relation
we are

interested in

is a
retract of

a larger one
with better
structural
properties.

⇓ ↘

States
×

Programs

States
×

Frame Stacks
×

Programs

(s , e) 〈s , Id , e〉

(s , Fs[e]) 〈s , Fs , e〉

17

