ML programs are typed

Programs of type
$$ty$$
: $\operatorname{Prog}_{ty} \triangleq \{ e \mid \emptyset \vdash e : ty \}$
where
Type assignment relation
 $\Gamma \vdash e : ty$
is inductively generated by axioms and rules following the structure of e ,
for example:
 $\Gamma \vdash e_1 : ty_1 \quad \Gamma[x \mapsto ty_1] \vdash e_2 : ty_2 \quad x \notin dom(\Gamma)$
 $\Gamma \vdash (\operatorname{let} x = e_1 \operatorname{in} e_2) : ty_2$
Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \operatorname{Prog}_{ty}$,
then $v \in \operatorname{Prog}_{ty}$.

ML programs are typed

Programs of type ty: $Prog_{ty} \triangleq \{ e \mid \emptyset \vdash e : ty \}$ where Type assignment relation $\int \Gamma = typing context$

$$\Gamma \vdash e: ty \qquad \begin{cases} e &= \text{expression to be typed} \\ ty &= \text{type} \end{cases}$$

is inductively generated by axioms and rules *following the structure* of e, for example:

$$\frac{\Gamma \vdash e_1 : ty_1 \quad \Gamma[x \mapsto ty_1] \vdash e_2 : ty_2 \quad x \notin dom(\Gamma)}{\Gamma \vdash (\operatorname{let} x = e_1 \operatorname{in} e_2) : ty_2}$$

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \operatorname{Prog}_{ty}$, then $v \in \operatorname{Prog}_{ty}$.

. proof by induction on the derivation of $e_{,s} \Rightarrow v_{,s}$

9

ML programs are typed

Programs of type
$$ty$$
: $Prog_{ty} \triangleq \{ e \mid \emptyset \vdash e : ty \}$ whereType assignment relation $\Gamma \vdash e : ty$ $\Gamma \vdash e : ty$ $\Gamma \vdash e : ty$

is inductively generated by axioms and rules *following the structure* of e, for example:

$$\frac{\Gamma \vdash e_1 : ty_1 \quad \Gamma[x \mapsto ty_1] \vdash e_2 : ty_2 \quad x \notin dom(\Gamma)}{\Gamma \vdash (\operatorname{let} x = e_1 \operatorname{in} e_2) : ty_2}$$

PRESERVATION

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \operatorname{Prog}_{ty}$, then $v \in \operatorname{Prog}_{ty}$.

ML transition relation

$$(s, e) \rightarrow (s', e')$$
 Where $loc(e) \leq dom(s)$
& $loc(e') \leq dom(s')$

9

is inductively generated by rules following the structure of e—e.g. a simplification step

$$(s , e_1) \to (s' , e'_1)$$

$$(s \ , \operatorname{let} x$$
 = $e_1 \operatorname{in} e_2)
ightarrow (s' \ , \operatorname{let} x$ = $e_1' \operatorname{in} e_2)$

a basic reduction

v a canonical form

$$(s \;, \operatorname{let} x$$
 = $v \; \operatorname{in} e)
ightarrow (s \;, e[v/x])$

(see Sect. A.5 for the full definition).

Write \rightarrow^{*} for reflexive-transitive closure of \rightarrow . For example... Recall (p381):

 $F \triangleq$ let a = ref() in let b = ref() in fun $x \rightarrow$ if x == a then belse a $G \triangleq$ let c = ref() in let d = ref() in $fun y \rightarrow$ if y == d then d else c

For $T \triangleq \text{fun } f \to \text{let } x = \text{ref()in } f(f x) == f x$, T F has value false, whereas T G has value true, so $F \not\cong_{\text{ctx}} G$.

ACS L16, lecture 2

9/10

(s, let x = ref() in v(vx) == vx)V-X $(S', \vee(\vee l_3) == \vee l_a)$ where 5'={{ +>(), {+>(). () $(s', v'_{4} == v'_{3})$ $(s', l_2 = -v l_3)$ $(s', b_{i} = = l_{i}) \longrightarrow (s', false)$

ML programs are typed