Introduction: Contextual Equivalence

ACS L16, lecture 2

1/10

Styles of PL semantics

- Program logics
 - basis for verification
 - validated by operational/denotational semantics
- Denotational semantics
 - foundations and structure
 - involves sophisticated mathematics
- Operational semantics
 - basis for implementation
 - involves (deceptively) simple mathematics

The three approaches are inter-linked.

Styles of semantics

- Program logics
- Denotational semantics
- Operational semantics

Let's compare their answers to a fundamental question:

When are two program phrases equal?

ACS L16, lecture 2

2/10

When are two program phrases semantically equal?

When are two program phrases semantically equal?

Program Logic:

when they satisfy the same logical assertions.

E.g. $C \cong C'$ iff for all pre-, post-conditions P, Q

 $\{P\} C \{Q\} \Leftrightarrow \{P\} C' \{Q\}$

ACS L16, lecture 2

3/10

When are two program phrases semantically equal?

Program Logic:

when they satisfy the same logical assertions.

Denotational semantics:

when they have equal denotations.

When are two program phrases semantically equal?

Program Logic:

when they satisfy the same logical assertions.

Denotational semantics:

when they have equal denotations.

Operational semantics:

when they are contextually equivalent.

3/10

Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

We assume the programming language comes with an operational semantics as part of its definition

Contextual equivalences

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Different choices lead to possibly different notions of contextual equivalence.

4/10

Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716): two mathematical objects are equal if there is no test to distinguish them.

Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

first known CS occurrence of this notion in Jim Morris' PhD thesis, *Lambda Calculus Models of Programming Languages* (MIT, 1969)

ACS L16, lecture 2

4/10

Contextual Equivalence for HOT Programming Languages

Contextual Equivalence for HOT Programming Languages

First-class functions.Types: higher-order, polymorphic, recursive.+ local mutable state, modules, objects, concurrency, proof search, ...

5/10

Contextual Equivalence for HOT Programming Languages

SML, OCaml, Haskell, Curry, Mercury, C# 3.0, F#, ...

let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a let b = ref(-n) in fun $y \rightarrow b := !b - y;$ -(!b)

ACS L16, lecture 2

Are these OCaml expressions contextually equivalent?

let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a

let
$$b = ref(-n)$$
 in
fun $y \rightarrow b := !b - y;$
 $-(!b)$

Etymology of "OCaml" (caml.inria.fr/ocaml):

6/10

let $a = \operatorname{ref} n$ in fun $x \to a := !a + x;$!a let b = ref(-n) in fun $y \rightarrow b := !b - y;$ -(!b)

Etymology of "OCaml" (caml.inria.fr/ocaml):

CAM =" Categorial Abstract Machine"

ACS L16, lecture 2

Are these OCaml expressions contextually equivalent?

let
$$b = ref(-n)$$
 in
fun $y \rightarrow b := !b - y;$
 $-(!b)$

Etymology of "OCaml" (caml.inria.fr/ocaml):

6/10

Are these OCaml expressions contextually equivalent?

 $H \triangleq$ let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a

$$K \triangleq$$

let $b = ref(-n)$ in
fun $y \rightarrow b := !b - y;$
 $-(!b)$

Yes, $H \cong_{ctx} K$, in the sense that for all states s and all well-typed, closing contexts C[-], $\exists s'. \langle s, C[H] \rangle \rightarrow^* \langle s', true \rangle$ $\Leftrightarrow \exists s''. \langle s, C[K] \rangle \rightarrow^* \langle s'', true \rangle$

 $\begin{array}{c} H \triangleq \\ \texttt{let } a = \texttt{ref } n \texttt{ in} \\ \texttt{fun } x \to a := ! a + x \texttt{;} \\ ! a \end{array} \right| \begin{array}{c} k \\ \texttt{l} \\ \texttt{f} \\ \texttt{f} \\ \texttt{f} \end{array}$

$$\begin{split} K &\triangleq \\ \texttt{let } b = \texttt{ref}(-n) \texttt{ in } \\ \texttt{fun } y &\to b := ! b - y \texttt{;} \\ -(! b) \end{split}$$

Yes, $H \cong_{ctx} K$, in the sense that for all states s and all well-typed, closing contexts C[-], $\exists s'. \langle s, C[H] \rangle \rightarrow^* \langle s', true \rangle$ $\Leftrightarrow \exists s''. \langle s, C[K] \rangle \rightarrow^* \langle s'', true \rangle$ an O(aml syntax tree with some subtrees within the scope of a binding for n replaced by the place holder "_"

Are these OCaml expressions contextually equivalent?

 $H \triangleq$ let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a

$$\begin{split} K &\triangleq \\ \texttt{let } b = \texttt{ref}(-n) \texttt{ in } \\ \texttt{fun } y \to b := ! b - y \texttt{;} \\ -(! b) \end{split}$$

Ocame operational semantics

Yes, $H \cong_{ctx} K$, in the sense that for all states s and all well-typed, closing contexts C[-], $\exists s'. \langle s, C[H] \rangle \rightarrow^* \langle s', true \rangle$ $\Leftrightarrow \exists s''. \langle s, C[K] \rangle \xrightarrow{}^* \langle s'', true \rangle$

Why contextual equivalence matters

Philosophically important:

operational behaviour is a characteristic feature of programming language semantics that distinguishes it from related areas of logic.

(Proof Theory, Model Theory, Recursion Theory)

Pragmatically important:
 Contextual equivalence is used in verification of many programming language correctness properties.
 (E.g. compiler optimisations, correctness of ADTs, information hiding and security properties,...)

7/10

Why contextual equivalence matters

What is special about HOT languages?

"When one attempts to combine language concepts, unexpected and counterintuitive interactions arise. At this point, even the most experienced designer's intuition must be butressed by a rigorous definition of what the language means."

John Reynolds, 1990

Why contextual equivalence matters

What is special about HOT languages?

- type-directed "laws" for contextual equivalence :-)
- ► higher-order types ⇒ programs can make use of constituent phrases in dynamically complicated ways :-(

```
ACS L16, lecture 2
```

7/10

Why contextual equivalence matters

What is special about HOT languages?

- type-directed "laws" for contextual equivalence
- ► higher-order types ⇒ programs can make use of constituent phrases in dynamically complicated ways

e.g. Extensionality property for function types:

$$e_1 \cong_{ctx} e_2 : \tau \to \tau' \Leftrightarrow$$

 $(\forall e: \tau) e_1 e \cong_{ctx} e_2 e : \tau'$

Are these OCaml expressions contextually equivalent?

 $F \triangleq$ let a = ref() in let b = ref() in fun $x \rightarrow$ if x == a then belse a

$$G \triangleq$$

let $c = ref()$ in
let $d = ref()$ in
fun $y \rightarrow$
if $y == d$ then d
else c

No!

For $T \triangleq \text{fun } f \to \text{let } x = \text{ref}() \text{ in } f(f x) == f x$, T F has value false, whereas T G has value true, so $F \ncong_{\text{ctx}} G$.

 $H \triangleq$ let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a

$$\begin{array}{l}
K \triangleq \\
 let b = ref(-n) in \\
 fun y \rightarrow b := !b - y; \\
 -(!b)
\end{array}$$

Yes, $H \cong_{\operatorname{ctx}} K$, in the sense that

for all states s and all well-typed, closing contexts C[-],

 $\begin{array}{l} \exists s'. \langle s, C[H] \rangle \rightarrow^* \langle s', \text{true} \rangle \\ \Leftrightarrow \exists s''. \langle s, C[K] \rangle \rightarrow^* \langle s'', \text{true} \rangle \end{array}$

How does one prove such statements?

ACS L16, lecture 2

Are these OCaml expressions contextually equivalent?

 $H \triangleq$ let $a = \operatorname{ref} n$ in fun $x \to a := ! a + x;$! a

$$\begin{array}{l}
K \triangleq \\
 let b = ref(-n) in \\
 fun y \rightarrow b := !b - y; \\
 -(!b)
\end{array}$$

Yes, $H \cong_{ctx} K$, in the sense that for all states s and all well-typed, closing contexts C[-], $\exists s'. \langle s, C[H] \rangle \rightarrow^* \langle s', true \rangle$ $\Leftrightarrow \exists s''. \langle s, C[K] \rangle \rightarrow^* \langle s'', true \rangle$ How does one prove such statements? How does one prove such statements?

9/10