
Introduction:
Contextual Equivalence

ACS L16, lecture 2 1/10

Styles of PL semantics
� Program logics

� basis for verification
� validated by operational/denotational semantics

� Denotational semantics
� foundations and structure
� involves sophisticated mathematics

� Operational semantics
� basis for implementation
� involves (deceptively) simple mathematics

The three approaches are inter-linked.

ACS L16, lecture 2 10/10

Styles of semantics
� Program logics

� Denotational semantics

� Operational semantics

Let’s compare their answers to a fundamental question:

When are two program phrases equal?

ACS L16, lecture 2 2/10

When are two program phrases
semantically equal?

ACS L16, lecture 2 3/10

When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.

E.g. C ∼= C′ iff for all pre-, post-conditions P, Q

{P} C {Q} ⇔ {P} C′ {Q}

ACS L16, lecture 2 3/10

When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.

Denotational semantics:

when they have equal denotations.

ACS L16, lecture 2 3/10

When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.

Denotational semantics:

when they have equal denotations.

Operational semantics:

when they are contextually equivalent.

ACS L16, lecture 2 3/10

Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

We assume the programming language comes with an
operational semantics as part of its definition

ACS L16, lecture 2 4/10

Contextual equivalences
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Different choices lead to possibly different
notions of contextual equivalence.

ACS L16, lecture 2 4/10

Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

ACS L16, lecture 2 4/10

Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

first known CS occurrence
of this notion in Jim Morris’
PhD thesis, Lambda

Calculus Models of

Programming Languages

(MIT, 1969)

ACS L16, lecture 2 4/10

Contextual Equivalence for
HOT Programming Languages

ACS L16, lecture 2 5/10

Contextual Equivalence for
HOT Programming Languages

First-class functions.
Types: higher-order, polymorphic, recursive.

+ local mutable state, modules, objects,
concurrency, proof search, . . .

ACS L16, lecture 2 5/10

Contextual Equivalence for
HOT Programming Languages

SML, OCaml,
Haskell,
Curry, Mercury,
C# 3.0, F#, . . .

ACS L16, lecture 2 5/10

Are these OCaml expressions contextually equivalent?

let a = ref n in

fun x→ a := !a + x ;
!a

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

let a = ref n in

fun x→ a := !a + x ;
!a

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Etymology of “OCaml” (caml.inria.fr/ocaml):

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

let a = ref n in

fun x→ a := !a + x ;
!a

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Etymology of “OCaml” (caml.inria.fr/ocaml):

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

let a = ref n in

fun x→ a := !a + x ;
!a

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Etymology of “OCaml” (caml.inria.fr/ocaml):

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

let a = ref n in

fun x→ a := !a + x ;
!a

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

H �

let a = ref n in

fun x→ a := !a + x ;
!a

K �

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Yes, H ∼=ctx K, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s , C[H]〉 →∗ 〈s′ , true〉
⇔ ∃s′′. 〈s , C[K]〉 →∗ 〈s′′ , true〉

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

H �

let a = ref n in

fun x→ a := !a + x ;
!a

K �

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Yes, H ∼=ctx K, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s , C[H]〉 →∗ 〈s′ , true〉
⇔ ∃s′′. 〈s , C[K]〉 →∗ 〈s′′ , true〉

ACS L16, lecture 2 6/10

Are these OCaml expressions contextually equivalent?

H �

let a = ref n in

fun x→ a := !a + x ;
!a

K �

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Yes, H ∼=ctx K, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s , C[H]〉 →∗ 〈s′ , true〉
⇔ ∃s′′. 〈s , C[K]〉 →∗ 〈s′′ , true〉

ACS L16, lecture 2 6/10

Why contextual equivalence matters
� Philosophically important:

operational behaviour is a characteristic feature of
programming language semantics that distinguishes it
from related areas of logic.
(Proof Theory, Model Theory, Recursion Theory)

� Pragmatically important:
Contextual equivalence is used in verification of many
programming language correctness properties.
(E.g. compiler optimisations, correctness of ADTs, information

hiding and security properties,. . .)

ACS L16, lecture 2 7/10

Why contextual equivalence matters

What is special about HOT languages?

“When one attempts to combine language concepts,
unexpected and counterintuitive interactions arise. At
this point, even the most experienced designer’s intuition
must be butressed by a rigorous definition of what the
language means.”

John Reynolds, 1990

ACS L16, lecture 2 7/10

Why contextual equivalence matters

What is special about HOT languages?

� type-directed “laws” for contextual equivalence
:-)

� higher-order types ⇒ programs can make use of
constituent phrases in dynamically complicated ways
:-(

ACS L16, lecture 2 7/10

Why contextual equivalence matters

What is special about HOT languages?

� type-directed “laws” for contextual equivalence
:-)

� higher-order types ⇒ programs can make use of
constituent phrases in dynamically complicated ways
:-(

e.g. Extensionality property for function types:

e1
∼=ctx e2 : τ → τ

′ ⇔

(∀e : τ) e1 e ∼=ctx e2 e : τ
′

ACS L16, lecture 2 7/10

Are these OCaml expressions contextually equivalent?

let a = ref()in

let b = ref()in

fun x →
if x == a then b
else a

let c = ref()in

let d = ref()in

fun y →
if y == d then d
else c

x
public

a
private

b y
public

c
private

d

ACS L16, lecture 2 8/10

Are these OCaml expressions contextually equivalent?

F �

let a = ref()in

let b = ref()in

fun x →
if x == a then b
else a

G �

let c = ref()in

let d = ref()in

fun y →
if y == d then d
else c

No!

For T � fun f → let x = ref()in f (f x) == f x,

T F has value false, whereas T G has value true,

so F �∼=ctx G.

ACS L16, lecture 2 8/10

Are these OCaml expressions contextually equivalent?

H �

let a = ref n in

fun x→ a := !a + x ;
!a

K �

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Yes, H ∼=ctx K, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s , C[H]〉 →∗ 〈s′ , true〉
⇔ ∃s′′. 〈s , C[K]〉 →∗ 〈s′′ , true〉

How does one prove such statements?

ACS L16, lecture 2 9/10

Are these OCaml expressions contextually equivalent?

H �

let a = ref n in

fun x→ a := !a + x ;
!a

K �

let b = ref(−n) in

fun y→ b := !b − y ;
−(!b)

Yes, H ∼=ctx K, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s , C[H]〉 →∗ 〈s′ , true〉
⇔ ∃s′′. 〈s , C[K]〉 →∗ 〈s′′ , true〉

How does one prove such statements?

ACS L16, lecture 2 9/10

