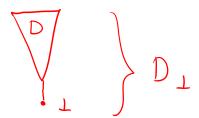
Constructions on domains

Lifting and unlifting

Lift of a cpo **D** is the domain

$$D_{\perp} \triangleq D \cup \{\perp\}$$

where \bot is some element not in D and the partially order on D_\bot is $\Box_D \cup \{(\bot, x) \mid x \in D_\bot\}$.



Lifting and unlifting

Lift of a cpo **D** is the domain

$$D_{\perp} \triangleq D \cup \{\perp\}$$

where \bot is some element not in D and the partially order on D_\bot is $\sqsubseteq_D \cup \{(\bot, x) \mid x \in D_\bot\}$.

Unlift of a domain D is the cpo

$$D_{\downarrow} \triangleq \{d \in D \mid d \neq \bot\}$$

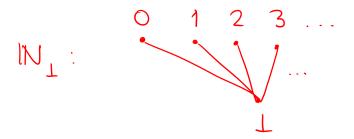
with partial order as for D.

Discrete cpos and flat domains

The discrete cpo on a set S is given by the partial order

$$x \sqsubseteq_S x' \triangleq x = x' \quad (all \ x, x' \in S)$$

Flat domains S_{\perp} are the lifts of discrete cpos.



Products

The product of two cpos (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2\}$$

and partial order _ defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \triangleq d_1 \sqsubseteq_1 d_1' \& d_2 \sqsubseteq_2 d_2'$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j})$$

Products

The product of two cpos (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2\}$$

and partial order _ defined by

ACS L16. lecture 10

$$(d_1,d_2)\sqsubseteq(d_1',d_2')\triangleq d_1\sqsubseteq_1 d_1' \& d_2\sqsubseteq_2 d_2'$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0}(d_{1,n},d_{2,n})=(\bigsqcup_{i\geq 0}d_{1,i},\bigsqcup_{j\geq 0}d_{2,j})$$

If
$$(D_1, \sqsubseteq_1)$$
 and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \sqsubseteq)$ and $\bot_{D_1 \times D_2} = (\bot_{D_1}, \bot_{D_2})$.

Smash product and coalesced sum

Smash product of domains **D** and **E**:

$$D \otimes E \triangleq (D_{\downarrow} \times E_{\downarrow})_{\perp}$$

strict continuous functions
$$D \otimes E \longrightarrow F$$
 are in bijection with continuous functions $f: D \times E \longrightarrow F$ that are strict in each variable separately $f(\bot,e) = \bot \qquad f(d,\bot) = \bot$ (all $e \in E$, $d \in D$)

Smash product and coalesced sum

Smash product of domains **D** and **E**:

$$D \otimes E \triangleq (D_{\downarrow} \times E_{\downarrow})_{\perp}$$

Coalesced sum of domains **D** and **E**:

$$D \oplus E \triangleq (D_{\downarrow} \uplus E_{\downarrow})_{\perp}$$
 (is the coproduct in the category of domains 4 strict ctrfns)

(Disjoint union of two sets X and Y:

$$X \uplus Y \triangleq \{(0,x) \mid x \in X\} \cup \{(1,y) \mid y \in Y\}$$

is the coproduct of X and Y in the category of sets and functions.)

Function cpos and domains

Given cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

$$D \rightarrow E \triangleq \{f \mid f : D \rightarrow E \text{ is a continuous function}\}$$

and partial order: $f \sqsubseteq f' \triangleq \forall d \in D.f(d) \sqsubseteq_E f'(d)$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$(\bigsqcup_{n\geq 0} f_n)(d) = \bigsqcup_{n\geq 0} f_n(d)$$

Function cpos and domains

Given cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

$$D \rightarrow E \triangleq \{f \mid f : D \rightarrow E \text{ is a continuous function}\}$$

and partial order: $f \sqsubseteq f' \triangleq \forall d \in D.f(d) \sqsubseteq_E f'(d)$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$(\bigsqcup_{n>0} f_n)(d) = \bigsqcup_{n>0} f_n(d)$$

If E is a domain, then so is $D \to E$: $\bot_{D \to E}$ is the constant function mapping each $d \in D$ to \bot_E .

Domain of strict functions

Given domains **D** and **E** we get a domain

$$D \multimap E \triangleq \{ f \in (D \to E) \mid f(\bot_D) = \bot_E \}$$

with partial order, lubs of chains and least element as for $D \rightarrow E$.

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}$, $(-) \times (-)$, $(-) \otimes (-)$, $(-) \oplus (-)$, $(-) \to (-)$ and $(-) \multimap (-)$.

Eg.
$$\Phi(x) \triangleq (x \rightarrow x)_{\perp}$$

or $\Phi(x) \triangleq (Z_{\perp} \rightarrow x) \rightarrow (Z_{\perp} \otimes (Z_{\perp} \rightarrow x))$

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}$, $(-) \times (-)$, $(-) \otimes (-)$, $(-) \oplus (-)$, $(-) \to (-)$ and $(-) \multimap (-)$.

Aim to show that every domain equation has a solution

$$D \cong \Phi(D)$$

that is minimal is a sense to be explained.

Domain equations

$X \cong \Phi(X)$

where $\Phi(X)$ is a formal expression built up from the variable X and constants ranging over domains, using the domain constructions $(-)_{\perp}$, $(-) \times (-)$, $(-) \otimes (-)$, $(-) \oplus (-)$, $(-) \to (-)$ and $(-) \rightarrow (-)$.

Aim to show that every domain equation has a solution

that is minimal is a sense to be explained. In Q(x) by D

isomorphism (in the category of domains & cts functions)

Example

Denotational semantics of call-by-name &-calculus

$$\lambda$$
-Terms $e \in \Lambda := x$ $(x \in V)$ Countably infinite set

Call-by-name evaluation relation e > c between closed terms e,c is inductively generated by

$$\lambda x.e \Rightarrow \lambda x.e$$

$$e_1 \Rightarrow \lambda x.e \quad e[e_2/x] \Rightarrow c$$
 $e_1e_2 \Rightarrow c$
Substitution

Suppose given
$$\{domain D | isomorphism i : (D o D)_1 \cong D$$

Using i, define continuous functions fun $:(D \rightarrow D) \longrightarrow D$

fun :
$$(D \rightarrow D) \longrightarrow D$$

 $f \mapsto i(f)$

$$(d,d') \mapsto \begin{cases} i(d)d' & \text{if } i'(d) \neq \bot \\ \bot & \text{if } i'(d) = \bot \end{cases}$$

Note that

app
$$(fun(f),d) = i^{-1}(i(f))d = f(d)$$

Suppose given
$$\{domain D | isomorphism i : (D o D)_{\perp} \cong D$$

Using i, define continuous functions fun : $(D \rightarrow D) \longrightarrow D$

fun :
$$(D \rightarrow D) \longrightarrow D$$

 $f \longmapsto i(f)$

$$app: D \times D \longrightarrow D$$

$$(d,d') \longmapsto \begin{cases} i(d)d' & \text{if } i'(d) \neq \bot \\ \bot & \text{if } i'(d) = \bot \end{cases}$$

Define a domain of environments:
$$\overline{bv} \triangleq \overline{D} \quad \text{(countable product of D)}$$

Denotation of λ -Terms

Le Ip
$$\in$$
 D
 λ -term $e \in \Lambda$ environment $p \in D^{\vee}$

- λ -term $e \in \Lambda$ environment $\rho \in D'$ defined by recursion on the structure of e:

 - $[\lambda x.e] \rho = fun(d \in D \mapsto [e](\rho[x \mapsto d]))$
 - · Leelp = app(Lelp, Le'lp)

Denotation of λ -Terms

Le Ip
$$\in$$
 D
 λ -term $e \in \Lambda$ environment $\rho \in D^{\vee}$

- defined by recursion on the structure of e:
 - [x]p = p(x)
 - $[\lambda x.e] \rho = fun(d \in D \mapsto [e](\rho[x \mapsto d]))$
 - · [ee]p = app([e]p, [e']p)

updated environment, maps >c to d and otherwise acts like p

E.g.
$$[\lambda x.x] \rho = \text{fun}(d \mapsto [x](\rho[x \mapsto d]))$$

= $\text{fun}(id_D)$
and so
 $[\lambda y.(\lambda x.x)y] \rho$

$$\begin{bmatrix}
\lambda_{y} \cdot (\lambda x.x)y \end{bmatrix} \rho \\
= fun(d \mapsto [(\lambda x.x)y](\rho[y\mapsto d])) \\
= fun(d \mapsto app(fun(id_{D}), d)) \\
= fun(id_{D}) \\
= [[\lambda_{y} \cdot y]] \rho$$