Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716): two mathematical objects are equal if there is no test to distinguish them.

ML Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent (\cong_{ctx}) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716): two mathematical objects are equal if there is no test to distinguish them. Need to define these terms (for ML)

• occurrence of an expression in a program...

ML Contexts CEJ

ML Contexts CEJ

-so can't identify contexts up to a equiv. - complicates type assignment for contexts

ML Contextual Equivalence [re=dxe; ty is defined to hold if : • The: ty and The: ty • for all contexts GE] such that C[ei] & C[ez] are programs, and for all states s if $S, C[e_1] \implies V_1, S_1$ then S, C[e_2] \Rightarrow V₂, S₂ with obs(V₁, S₁)=obs(V₂, S₂) and vice versa.

ML Contextual Equivalence [1-9=ch.g: ty is defined to hold if : • The: ty and The: ty • for all contexts GE] such that C[ei] & C[ez] are programs, and for all states s if $S, G[e_1] \implies V_1, S_1$ then S, C[e_2] \Rightarrow V₂, 52 with obs(V₁, S₁)=obs(V₂, S₂) and vice versa.

Given $e_1, e_2 \in \operatorname{Prog}_{ty}$, define

$$egin{aligned} e_1 =_{ ext{ctx}} e_2: ty & &= e_1 \leq_{ ext{ctx}} e_2: ty & &e_2 \leq_{ ext{ctx}} e_1: ty \ e_1 \leq_{ ext{ctx}} e_2: ty & &= & orall x, e, ty', s . \ (x: ty dash e: ty') & & \ s, e[e_1/x] \Downarrow \supset s, e[e_2/x] \Downarrow \end{aligned}$$

where $s, e \downarrow$ indicates termination:

$$s, e \Downarrow \ riangleq \ \exists s', v \ (s, e \Rightarrow v, s')$$

Other natural choices of what to observe apart from termination do not change $=_{ctx}$.

E.g.
$$rac{s', e_2[v_1/x] \Downarrow}{s, ext{let} x = e_1 ext{ in } e_2 \Downarrow}$$
 if $s, e_1 \Rightarrow v_1, s'$

but $e_2[v_1/x]$ is not built from subphrases of let $x = e_1$ in e_2 .

Simple example of the difficulty this causes: consider a divergent integer expression $\bot \triangleq (\operatorname{fun} f = (x : \operatorname{int}) \rightarrow f x) 0$. It satisfies $\bot \leq_{\operatorname{ctx}} n : \operatorname{int}$, for any $n \in \operatorname{Prog_{int}}$ Obvious strategy for proving this is to try to show

$$s, e \Downarrow \supset \forall x, e'. \ e = e'[\perp/x] \supset s, e'[n/x] \Downarrow$$

by induction on the derivation of $s, e \downarrow$. But the induction steps are hard to carry out because of the above problem.

Lemma. $(s, e) \rightarrow (s', e')$ holds iff $e = \mathcal{E}[r]$ and $e' = \mathcal{E}[r']$ for some evaluation context \mathcal{E} and basic reduction $(s, r) \rightarrow (s', r')$.

For Evaluation contexts are closed contexts that want to evaluate their hole $(\mathcal{E} := - | \mathcal{E} e | v \mathcal{E} | \text{let } x = \mathcal{E} \text{ in } e | \cdots).$

 $\mathcal{E}[r]$ denotes the expression resulting from replacing the 'hole' [-] in \mathcal{E} by the expression r.

Basic reductions $(s, r) \rightarrow (s', r')$ are the axioms in the inductive definition of \rightarrow à la Plotkin—see Sect. A.5.

-see (7) on p387 for full definition

Fact. Every closed expression not in canonical form is uniquely of the form $\mathcal{E}[r]$ for some evaluation context \mathcal{E} and redex r.

Fact. Every evaluation context \mathcal{E} is a composition $\mathcal{F}_1[\mathcal{F}_2[\cdots \mathcal{F}_n[-]\cdots]]$ of basic evaluation contexts, or evaluation frames.

Hence can reformulate transitions between configurations $(s, e) = (s, \mathcal{F}_1[\mathcal{F}_2[\cdots \mathcal{F}_n[r] \cdots]])$ in terms of transitions between configurations of the form

$$\langle s \;, \mathcal{F}\!s \;, r
angle$$

where $\mathcal{F}s$ is a list of evaluation frames—the frame stack.

(See Sect. A.6 for the full definition.)

Initial configurations: $\langle s, \mathcal{I}d, e \rangle$ terminal configurations: $\langle s, \mathcal{I}d, v \rangle$ ($\mathcal{I}d$ the empty frame stack, v a closed canonical form). Theorem. $\langle s \ , \mathcal{F}s \ , e \rangle \to^* \langle s' \ , \mathcal{I}d \ , v \rangle$ iff $s, \mathcal{F}s[e] \Rightarrow v, s'$.

where
$$egin{cases} \mathcal{I}d[e] & riangleq e \ (\mathcal{F}s \circ \mathcal{F})[e] & riangleq \mathcal{F}s[\mathcal{F}[e]] \end{cases}$$

Theorem.
$$\langle s \ , \mathcal{F}s \ , e \rangle \rightarrow^* \langle s' \ , \mathcal{I}d \ , v \rangle$$
 iff $s, \mathcal{F}s[e] \Rightarrow v, s'$.

where
$$\begin{cases} \mathcal{I}d[e] & \triangleq e \\ (\mathcal{F}s \circ \mathcal{F})[e] & \triangleq \mathcal{F}s[\mathcal{F}[e]]. \end{cases}$$

Hence: $s, e \Downarrow iff \exists s', v (\langle s, \mathcal{I}d, e \rangle \rightarrow^* \langle s', \mathcal{I}d, v \rangle). \end{cases}$

So we can express termination of evaluation in terms of termination of the abstract machine. The gain is the following **simple, but key, observation:**

$$\searrow riangleq ig\{ \ \langle s \ , \ \mathcal{F}s \ , \ e
angle \ \mid \ \exists s', v \left(\langle s \ , \ \mathcal{F}s \ , \ e
angle
ightarrow^* \ \langle s' \ , \ \mathcal{I}d \ , \ v
angle
ight) ig\}$$

has a direct, inductive definition following the structure of e and $\mathcal{F}s$ —see Sect. A.7.

