Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent ($\cong_{\text {ctx }}$) if occurrences of the first phrase in any program can be replaced by the second phrase without affecting the observable results of executing the program.

Gottfried Wilhelm Leibniz (1646-1716):
two mathematical objects are equal
if there is no test to distinguish them.

ML Contextual equivalence

Two phrases of a programming language are ("Morris style") contextually equivalent ($\cong_{c t x}$) if
occurrences of the first phrase in any program can be replaced By the second phrase without affecting the observable results) of executing the program.

Gottfried W/ihelm/Leibniz (1646-1716):
two mather matigal objects are equal if there is no test to distinguish them.

$$
\begin{aligned}
& \text { need to define the seterms } \\
& \text { (for } M L \text {) }
\end{aligned}
$$

program $\stackrel{\Delta}{=}$
well-typed expression with no free identifiers

- executing program e in a given state $s \triangleq$ finding (v, s) such that $s, e \Longrightarrow v, s$
- observable results of execution, obs (v, s) :
$o b s(c, s) \triangleq c$ if $c=$ true, false, n, ()
$\operatorname{obs}\left(v_{1}, v_{2}, s\right) \triangleq \operatorname{obs}\left(v_{1}, s\right)$, obs $\left(v_{2}, s\right)$
$\delta b s($ fun $(x ; t y) \rightarrow e) \triangleq\langle$ fun \rangle
obs (fun $f=(x: t y) \rightarrow e) \triangleq\langle$ fun \rangle
obs $(l, s) \stackrel{\wedge}{ }\{$ contents $=n\}$ if $(l \mid t n) \in S$
- occurrence of an expression in a program...

ML Contexts C[

- ML syntax trees with a single sub-tree replaces by "hole", -. E.g.

$$
\text { fun }(x: \text { int }) \rightarrow x+(-)
$$

- $e[e] \triangleq$ expression resulting from replacing hole - by e in context e
E.g. When $C[-]$ is fun $(x$ int $) \rightarrow x+(-)$ then $e[x]$ is fun $(x:$ int $) \rightarrow x+x$

ML Contexts C[$]$

- ML syntax trees with a single sub-tree replaces by "hole", -. E.g.

$$
\text { fun }(x: \text { int }) \rightarrow x+(-)
$$

- $e[e] \triangleq$ expression resulting from replacing hole - by e in context e
E.g. When $e[-]$ is fun $(x$ int $) \rightarrow x+(-)$ then $e[x]$ is fun $(x:$ int $) \rightarrow x+x$ capture!
-so cant identify contexts up to α-equiv.
- complicates type assignment for contexts

ML Contextual Equivalence $\Gamma 1-e_{1}=d x e_{2}: t y$ is defined to hold if:

- [re: ty and [r-ez:ty
- for all contexts $C[-]$ such that $E\left[e_{1}\right]$ \& $C\left[e_{2}\right]$ are programs, and for all states s
if $s, \zeta\left[e_{1}\right] \Rightarrow v_{1}, S_{1}$
then $s, C\left[e_{2}\right] \Rightarrow v_{2}, s_{2}$ with $\operatorname{obs}\left(v_{1}, s_{1}\right)=\operatorname{obs}\left(v_{2}, s_{2}\right)$ and vice versa.

ML Contextual Equivalence $\Gamma+e_{1}=c x e_{2}: t y$ is define e to hold if:

- 「मe e_{1} ty and [r- $2: t y$
- for all contexts $G[-]$ such that $\varphi\left[e_{1}\right]$ \& $\zeta\left[e_{2}\right]$ are programs, and for all states s if $s, \zeta\left[e_{1}\right] \Rightarrow v_{1}, s_{1}$
then $s, \zeta\left[e_{2}\right] \Rightarrow v_{2}, s_{2}$ with $\operatorname{obs}\left(v_{1}, s_{1}\right)=\operatorname{obs}\left(v_{2}, s_{2}\right)$ and vice versa.
Simplifying assumptions:
- only consider closed expressions (can use e $[-1 / x]$ as contexts
- only observe termination (does nit change $=d x$-Xx B.3)

Contextual preorder / equivalence

Given $e_{1}, e_{2} \in \operatorname{Prog}_{t y}$, define

$$
\begin{array}{r}
e_{1}=_{\operatorname{ctx}} e_{2}: t y \triangleq \quad e_{1} \leq_{\mathrm{ctx}} e_{2}: t y \& e_{2} \leq_{\mathrm{ctx}} e_{1}: t y \\
e_{1} \leq_{\mathrm{ctx}} e_{2}: t y \triangleq \quad \forall x, e, t y^{\prime}, s \cdot\left(x: t y \vdash e: t y^{\prime}\right) \& \\
s, e\left[e_{1} / x\right] \Downarrow \supset s, e\left[e_{2} / x\right] \Downarrow
\end{array}
$$

where $s, e \Downarrow$ indicates termination:

$$
s, e \Downarrow \triangleq \exists s^{\prime}, v\left(s, e \Rightarrow v, s^{\prime}\right)
$$

Other natural choices of what to observe apart from termination do not change $={ }_{\text {ctr }}$.
(see Exercise B.3)

Definition of \Downarrow is not syntax-directed

E.g. $\frac{s^{\prime}, e_{2}\left[v_{1} / x\right] \Downarrow}{s, \text { let } x=e_{1} \text { in } e_{2} \Downarrow}$ if $s, e_{1} \Rightarrow v_{1}, s^{\prime}$
but $\boldsymbol{e}_{2}\left[v_{1} / x\right]$ is not built from subphrases of let $x=e_{1}$ in $\boldsymbol{e}_{\mathbf{2}}$.

Simple example of the difficulty this causes: consider a divergent integer expression $\perp \triangleq$ (fun $f=(x$: int) $->f x) 0$. It satisfies $\perp \leq_{\text {ctx }} \boldsymbol{n}$: int, for any $\boldsymbol{n} \in \operatorname{Prog}_{\text {int }}$
Obvious strategy for proving this is to try to show

$$
s, e \Downarrow \supset \forall x, e^{\prime} \cdot e=e^{\prime}[\perp / x] \supset s, e^{\prime}[n / x] \Downarrow
$$

by induction on the derivation of $s, e \Downarrow$. But the induction steps are hard to carry out because of the above problem.

Felleisen-style presentation of \rightarrow

Lemma. $(s, e) \rightarrow\left(s^{\prime}, e^{\prime}\right)$ holds ff $e=\mathcal{E}[r]$ and $e^{\prime}=\mathcal{E}\left[r^{\prime}\right]$ for some evaluation context \mathcal{E} and basic reduction $(s, r) \rightarrow\left(s^{\prime}, r^{\prime}\right)$.

Evaluation contexts are closed contexts that want to evaluate their hole $(\mathcal{E}::=-|\mathcal{E} e| v \mathcal{E} \mid$ let $x=\mathcal{E}$ in $e \mid \cdots)$.
$\mathcal{E}[r]$ denotes the expression resulting from replacing the 'hole' $[-]$ in \mathcal{E} by the expression \boldsymbol{r}.

Basic reductions $(s, r) \rightarrow\left(s^{\prime}, r^{\prime}\right)$ are the axioms in the inductive definition of \rightarrow à la Plotkin-see Sect. A.5.
see (7) on p387 for full definition

Fact. Every closed expression not in canonical form is uniquely of the form $\mathcal{E}[r]$ for some evaluation context \mathcal{E} and redex \boldsymbol{r}.

Fact. Every evaluation context \mathcal{E} is a composition
$\mathcal{F}_{1}\left[\mathcal{F}_{2}\left[\cdots \mathcal{F}_{n}[-] \cdots\right]\right]$ of basic evaluation contexts, or evaluation frames.

Hence can reformulate transitions between configurations $(s, e)=\left(s, \mathcal{F}_{1}\left[\mathcal{F}_{2}\left[\cdots \mathcal{F}_{n}[r] \cdots\right]\right)\right.$ in terms of transitions between configurations of the form

$$
\langle s, \mathcal{F} s, r\rangle
$$

where $\mathcal{F} s$ is a list of evaluation frames-the frame stack.

An ML abstract machine

$$
\begin{gathered}
\text { Transitions } \\
\langle s, \mathcal{F} s, e\rangle \rightarrow\left\langle s^{\prime}, \mathcal{F} s^{\prime}, e^{\prime}\right\rangle
\end{gathered} \begin{cases}s, s^{\prime} & =\text { states } \\
\mathcal{F} s, \mathcal{F} s^{\prime} & =\text { frame stacks } \\
e, e^{\prime} & =\text { closed expressions }\end{cases}
$$

defined by cases (i.e. no induction), according to the structure of e and (then) $\mathcal{F} s$, for example:
$\left\langle s, \mathcal{F} s\right.$, let $x=e_{1}$ in $\left.e_{2}\right\rangle \rightarrow$

$$
\left\langle s, \mathcal{F} s \circ\left(\operatorname{let} x=[-] \text { in } e_{2}\right), e_{1}\right\rangle
$$

$\langle s, \mathcal{F} s \circ(\operatorname{let} x=[-]$ in $e), \boldsymbol{v}\rangle \rightarrow\langle s, \mathcal{F} s, e[v / x]\rangle$
(See Sect. A. 6 for the full definition.)
Initial configurations: $\langle s, \mathcal{I} d, e\rangle$
terminal configurations: $\langle s, \mathcal{I} d, \boldsymbol{v}\rangle$
($\mathcal{I d}$ the empty frame stack, \boldsymbol{v} a closed canonical form).

Theorem. $\langle s, \mathcal{F} s, e\rangle \rightarrow^{*}\left\langle s^{\prime}, \mathcal{I} d, v\right\rangle$ eff $s, \mathcal{F} s[e] \Rightarrow v, s^{\prime}$.
where $\begin{cases}\mathcal{I} d[e] & \triangleq e \\ (\mathcal{F} s \circ \mathcal{F})[e] & \triangleq \mathcal{F} s[\mathcal{F}[e]] .\end{cases}$
(tricky) Exercise -prove the theorem.

Theorem. $\langle s, \mathcal{F} s, e\rangle \rightarrow^{*}\left\langle s^{\prime}, \mathcal{I} d, v\right\rangle$ iff $s, \mathcal{F} s[e] \Rightarrow v, s^{\prime}$.
where $\begin{cases}\mathcal{I} d[e] & \triangleq e \\ (\mathcal{F} s \circ \mathcal{F})[e] & \triangleq \mathcal{F} s[\mathcal{F}[e]] .\end{cases}$
Hence: $\quad s, e \Downarrow$ iff $\exists s^{\prime}, v\left(\langle s, \mathcal{I} d, e\rangle \rightarrow^{*}\left\langle s^{\prime}, \mathcal{I} d, v\right\rangle\right)$.
So we can express termination of evaluation in terms of termination of the abstract machine. The gain is the following simple, but key, observation:
$\searrow \triangleq\left\{\langle s, \mathcal{F} s, e\rangle \mid \exists s^{\prime}, v\left(\langle s, \mathcal{F} s, e\rangle \rightarrow^{*}\left\langle s^{\prime}, \mathcal{I} d, v\right\rangle\right)\right\}$
has a direct, inductive definition following the structure of e and $\mathcal{F} s$-see Sect. A.7.

