# MPhil in Advanced Computer Science Topics in Logic and Complexity

Leader: Anuj Dawar Timing: either term

Prerequisites: Complexity Theory, Computation Theory, First-Order Logic

Structure: 16 Lectures

## **AIMS**

This module aims to provide an introduction to topics in complexity theory beyond that covered in the undergraduate course and a grounding in research that connects this with methods from logic. The topics covered in the last four lectures will focus on current research and may vary from year to year.

#### **SYLLABUS**

- 1. Complexity Theory—a review of the major complexity classes (space, time, nondeterministic, etc.) and their interrelationships (3L).
- 2. First-order and second-order logic—their expressive power and computational complexity (3L).
- 3. Lower bounds on expressive power—the use of games and locality (3L).
- 4. Fixed-point logics and descriptive complexity (3L)
- 5. A selection of topics from the following (4L):
  - (a) finite-variable logics;
  - (b) complexity of constraint satisfaction problems;
  - (c) random structures;
  - (d) parameterized complexity;
  - (e) complexity of logical theories;
  - (f) logic and circuit complexity.
  - (g) logics of polynomial time computation.

### **OBJECTIVES**

On completion of this module students should:

- be familiar with the basic relationship between the expressive power of logic and computational complexity;
- be able to formulate simple game-based inexpressibility arguments;
- be able to identify current research issues relating logic to complexity.

#### COURSEWORK

## PRACTICAL WORK

None.

#### ASSESSMENT

- The component being assessed: the lecture syllabus
- How it will be assessed: a take-home test.
- Who will set and mark the assessments: The principal lecturer.
- Its weighting toward the final module mark—100%.
- Form of the final module mark: a percentage

## RECOMMENDED READING

Goldreich, Computational Complexity: A Conceptual Perspective, CUP 2008. Grädel et al., Finite Model Theory and its Applications, Springer 2007. Libkin, Elements of Finite Model Theory, Springer 2004 Immerman, Descriptive Complexity, Springer 1999.

Last updated: December 2008