Topics in Logic and Complexity Handout 9

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then

$$
\mathbf{l f} \mathbf{p}_{R, \mathbf{x}} \phi
$$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in \mathbf{x} in $\mathbf{l f p}_{R, \mathbf{x}} \phi$ are bound

Syntax of LFP

- If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a formula of LFP.
- If P is a predicate expression of LFP of arity k and \mathbf{t} is a tuple of terms of length k, then $P(\mathbf{t})$ is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \wedge \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Semantics of LFP

- If R is a relation symbol in σ, then $\imath(R)=\mathcal{I}(R)$.
- If P is a predicate expression of the form $\mathbf{l f p}_{R, \mathbf{x}} \psi$, then $\imath(P)$ is the relation that is the least fixed point of the monotone operator F on A^{k} defined by:

$$
F(X)=\left\{\mathbf{a} \in A^{k} \mid \mathbb{A} \models \phi[\imath\langle X / R, \mathbf{x} / \mathbf{a}\rangle],\right.
$$

where $\imath\langle X / R, \mathbf{x} / \mathbf{a}\rangle$ denotes the interpretation \imath^{\prime} which is just like \imath except that $\imath^{\prime}(R)=X$, and $\imath^{\prime}(\mathbf{x})=\mathbf{a}$.

Transitive Closure

The formula (with free variables u and v)

$$
\left[\theta \equiv \mathbf{l f p}_{T, x y}(x=y \vee \exists z(E(x, z) \wedge T(z, y)))\right](u, v)
$$

defines the transitive closure of the relation E.

Thus $\forall u \forall v \theta$ defines connectedness.

The expressive power of LFP properly extends that of first-order logic.

Semantics of LFP

- If ϕ is of the form $t_{1}=t_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\imath\left(t_{1}\right)=\imath\left(t_{2}\right)$.
- If ϕ is of the form $R\left(t_{1}, \ldots, t_{k}\right)$, then $\mathbb{A} \models \phi[\imath]$ if,

$$
\left(\imath\left(t_{1}\right), \ldots, \imath\left(t_{k}\right)\right) \in \imath(R)
$$

- If ϕ is of the form $\psi_{1} \wedge \psi_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\mathbb{A} \models \psi_{1}[\imath]$ and $\mathbb{A} \models \psi_{2}[\imath$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[l]$ if, $\mathbb{A} \not \vDash \psi[\imath]$.
- If ϕ is of the form $\exists x \psi$, then $\mathbb{A} \models \phi[\imath]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[\imath\langle x / a\rangle]$.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs positively, then the greatest fixed point of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$$
\neg\left[\mathbf{l f p}_{R, \mathbf{x}} \neg \phi(R / \neg R)\right](\mathbf{x})
$$

where $\phi(R / \neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

Simultaneous Inductions

We are given two formulas $\phi_{1}(S, T, \mathbf{x})$ and $\phi_{2}(S, T, \mathbf{y})$,
S is k-ary, T is l-ary.

The pair (ϕ_{1}, ϕ_{2}) can be seen as defining a map:

$$
F: \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{l}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{l}\right)
$$

If both formulas are positive in both S and T, then there is a least fixed point.

$$
\left(P_{1}, P_{2}\right)
$$

defined by simultaneous induction on \mathbb{A}.

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_{1}(S, T)$ and $\phi_{2}(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_{S} and ϕ_{T} of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_{1} and ϕ_{2} by simultaneous induction.

Proof

Assume $k \leq l$.
We define P, of arity $l+2$ such that:

$$
\begin{aligned}
& \left(c, d, a_{1}, \ldots, a_{l}\right) \in P \text { if, and only if, either } c=d \text { and } \\
& \left(a_{1}, \ldots, a_{k}\right) \in P_{1} \text { or } c \neq d \text { and }\left(a_{1}, \ldots, a_{l}\right) \in P_{2}
\end{aligned}
$$

For new variables x_{1} and x_{2} and a new $l+2$-ary symbol R, define ϕ_{1}^{\prime} and ϕ_{2}^{\prime} by replacing all occurrences of $S\left(t_{1}, \ldots, t_{k}\right)$ by:

$$
x_{1}=x_{2} \wedge \exists y_{k+1}, \ldots, \exists y_{l} R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{k}, y_{k+1}, \ldots, y_{l}\right)
$$

and replacing all occurrences of $T\left(t_{1}, \ldots, t_{l}\right)$ by:

$$
x_{1} \neq x_{2} \wedge R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{l}\right)
$$

Inflationary Fixed Points

We can associtate with any formula $\phi(R, \mathbf{x})$ (even one that is not monotone in R) an inflationary operator

$$
I F_{\phi}(P)=P \cup F_{\phi}(P),
$$

On any finite structure \mathbb{A} the sequence

$$
\begin{aligned}
I F^{0} & =\emptyset \\
I F^{n+1} & =I F_{\phi}\left(I F^{n}\right)
\end{aligned}
$$

converges to a limit $I F^{\infty}$
If F_{ϕ} is monotone, then this fixed point is, in fact, the least fixed point of F_{ϕ}.

IFP

We define the logic IFP with a syntax similar to LFP except, instead of the lfp rule, we have

If R is a relation symbol of arity k, \mathbf{x} is a tuple of variables of length k and ϕ is any formula of IFP, then

$$
\operatorname{ifp}_{R, \mathbf{x}} \phi
$$

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate $\operatorname{expression} \operatorname{ifp}_{R, \mathbf{x}} \phi$ denotes the relation that is the limit reached by the iteration of the inflationary operator $I F_{\phi}$.

IFP

If ϕ defines a monotone operator, the relation defined by

$$
\operatorname{ifp}_{R, \mathbf{x}} \phi
$$

is the least fixed point of ϕ.
Thus, the expressive power of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah)

For every formula of ϕ of LFP, there is a predicate expression ψ of LFP such that, on any finite structure \mathbb{A}, ψ defines the same relation as $\operatorname{ifp}_{R, \mathbf{x}} \phi$.

Ranks

Let $\phi(R, \mathbf{x})$ be a formula defining an operator F_{ϕ} and $I F_{\phi}$ be the associated inflationary operator given by

$$
I F_{\phi}(S)=S \cup F_{\phi}(S)
$$

In a structure \mathbb{A}, we define for each $\mathbf{a} \in A^{k}$ a $\operatorname{rank}|\mathbf{a}|_{\phi}$.
The least n such that $\mathbf{a} \in I F^{\alpha}$, if there is such an n and ∞ otherwise.

Stage Comparison

We define the two stage comparison relations \preceq and \prec by:

$$
\begin{gathered}
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}^{\infty} \wedge|\mathbf{a}|_{\phi} \leq|\mathbf{b}|_{\phi} ; \\
\mathbf{a} \prec \mathbf{b} \Leftrightarrow|\mathbf{a}|_{\phi}<|\mathbf{b}|_{\phi} .
\end{gathered}
$$

These two relations can themselves be defined in IFP.

Stage Comparison in LFP

In the inductive definition of \preceq :

$$
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a}^{\prime} \preceq_{\phi} \mathbf{b}^{\prime}\right)\right\}\right)\right.\right.
$$

we can replace the negative occurrences of $\mathbf{a} \preceq \mathbf{b}$ with $\neg(\mathbf{b} \prec \mathbf{a})$, and similarly, in the definition of \prec replace negative occurrences of \prec with positive occurrences of \preceq
as long as we can define the maximal rank

Stage Comparison

$$
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{a} \prec \mathbf{b}\right\}\right) .
$$

$$
\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a} \preceq \mathbf{b}^{\prime}\right)\right\}\right) .
$$

Together, these give:

$$
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a}^{\prime} \preceq \mathbf{b}^{\prime}\right)\right\}\right)\right) .\right.
$$

This is an inductive definition of \preceq
A similar inductive definition is obtained from \prec

Maximal Rank

There is a formula $\mu(\mathbf{y})$, which defines the set of tuples of maximal rank.

$$
I F_{\phi}(\{\mathbf{b} \mid \mathbf{b} \preceq \mathbf{a}\}) \subseteq I F_{\phi}(\{\mathbf{b} \mid \mathbf{b} \prec \mathbf{a}\}) .
$$

Replace the negative occurrence of $\mathbf{b} \preceq \mathbf{a}$ by $\neg(\mathbf{a} \prec \mathbf{b})$

Reading List for this Handout

1. Immerman. Chapter 4.
2. Libkin. Sections 10.2 and 10.3.
3. Grädel et al. Secton 2.6.
