Topics in Logic and Complexity Handout 9

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and φ is a formula of LFP in which the symbol R only occurs positively, then

 $\mathbf{lfp}_{R,\mathbf{x}}\phi$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in $\mathbf{lfp}_{R,\mathbf{x}}\phi$ are bound

Syntax of LFP

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula of LFP.
- If *P* is a predicate expression of LFP of arity *k* and **t** is a tuple of terms of length *k*, then *P*(**t**) is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \land \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Semantics of LFP

Let $\mathbb{A} = (A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ .

Let ϕ be a formula of LFP, and i an interpretation in A of all the free variables (*first or second* order) of ϕ .

To each individual variable x, i associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ , i associates a relation $i(R) \subseteq A^k$.

i is extended to terms t in the usual way.

For constants c, $i(c) = \mathcal{I}(c)$. $i(f(t_1, \dots, t_n)) = \mathcal{I}(f)(i(t_1), \dots, i(t_n))$ 4

7

Semantics of LFP

- If R is a relation symbol in σ , then $\iota(R) = \mathcal{I}(R)$.
- If P is a predicate expression of the form $lfp_{R,\mathbf{x}}\psi$, then $\iota(P)$ is the relation that is the least fixed point of the monotone operator F on A^k defined by:

 $F(X) = \{ \mathbf{a} \in A^k \mid \mathbb{A} \models \phi[\imath \langle X/R, \mathbf{x}/\mathbf{a} \rangle],\$

where $i\langle X/R, \mathbf{x}/\mathbf{a} \rangle$ denotes the interpretation i' which is just like i except that i'(R) = X, and $i'(\mathbf{x}) = \mathbf{a}$.

Transitive Closure

The formula (with free variables u and v)

 $[\theta \equiv \mathbf{lfp}_{T,xy}(x = y \lor \exists z (E(x,z) \land T(z,y)))](u,v)$

defines the *transitive closure* of the relation E.

Thus $\forall u \forall v \theta$ defines *connectedness*.

The expressive power of LFP properly extends that of first-order logic.

- If ϕ is of the form $t_1 = t_2$, then $\mathbb{A} \models \phi[i]$ if, $i(t_1) = i(t_2)$.
- If ϕ is of the form $R(t_1, \ldots, t_k)$, then $\mathbb{A} \models \phi[i]$ if,

 $(i(t_1),\ldots,i(t_k)) \in i(R).$

- If ϕ is of the form $\psi_1 \wedge \psi_2$, then $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \models \psi_1[i]$ and $\mathbb{A} \models \psi_2[i]$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \not\models \psi[i]$.
- If ϕ is of the form $\exists x\psi$, then $\mathbb{A} \models \phi[i]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[i\langle x/a \rangle]$.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs *positively*, then the *greatest fixed point* of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$\neg [\mathbf{lfp}_{R,\mathbf{x}} \neg \phi(R/\neg R)](\mathbf{x})$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

6

11

Simultaneous Inductions

We are given two formulas $\phi_1(S, T, \mathbf{x})$ and $\phi_2(S, T, \mathbf{y})$, S is k-ary, T is *l*-ary.

The pair (ϕ_1, ϕ_2) can be seen as defining a map:

 $F: \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l) \to \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l)$

If both formulas are positive in both S and T, then there is a least fixed point.

 (P_1, P_2)

defined by *simultaneous induction* on \mathbb{A} .

Proof

Assume $k \leq l$.

We define P, of arity l + 2 such that:

 $(c, d, a_1, \ldots, a_l) \in P$ if, and only if, either c = d and $(a_1, \ldots, a_k) \in P_1$ or $c \neq d$ and $(a_1, \ldots, a_l) \in P_2$

For new variables x_1 and x_2 and a new l + 2-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

 $x_1 = x_2 \wedge \exists y_{k+1}, \dots, \exists y_l R(x_1, x_2, t_1, \dots, t_k, y_{k+1}, \dots, y_l),$

and replacing all occurrences of $T(t_1, \ldots, t_l)$ by:

 $x_1 \neq x_2 \wedge R(x_1, x_2, t_1, \dots, t_l).$

12

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_1(S,T)$ and $\phi_2(S,T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_1 and ϕ_2 by simultaneous induction.

Proof

Define ϕ as

$$(x_1 = x_2 \land \phi'_1) \lor (x_1 \neq x_2 \land \phi'_2).$$

Then,

 $[\mathbf{lfp}_{R,x_1x_2\mathbf{v}}\phi](x,x,\mathbf{y})$

defines P, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \dots, \exists y_l [\mathbf{lfp}_{R, x_1 x_2 \mathbf{y}} \phi](x, x, \mathbf{y});$$

and

 $\phi_T \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land [\mathbf{lfp}_{R, x_1 x_2 \mathbf{y}} \phi](x_1, x_2, \mathbf{y})).$

15

Inflationary Fixed Points

We can associtate with any formula $\phi(R, \mathbf{x})$ (even one that is not *monotone* in R) an *inflationary operator*

$$IF_{\phi}(P) = P \cup F_{\phi}(P),$$

On any *finite* structure \mathbb{A} the sequence

$$IF^{0} = \emptyset$$
$$IF^{n+1} = IF_{\phi}(IF^{n})$$

converges to a limit IF^{∞} .

If F_{ϕ} is monotone, then this fixed point is, in fact, the least fixed point of F_{ϕ} .

IFP

If ϕ defines a monotone operator, the relation defined by

$\mathbf{ifp}_{R,\mathbf{x}}\phi$

is the least fixed point of ϕ .

Thus, the *expressive power* of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah) For every formula of ϕ of LFP, there is a predicate expression ψ of LFP such that, on any finite structure \mathbb{A} , ψ defines the same relation as **ifp**_{R x} ϕ .

16

IFP

We define the logic IFP with a syntax similar to LFP except, instead of the lfp rule, we have

If R is a relation symbol of arity k, **x** is a tuple of variables of length k and ϕ is any formula of IFP, then

$\mathbf{ifp}_{R,\mathbf{x}}\phi$

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate expression $\mathbf{ifp}_{R,\mathbf{x}}\phi$ denotes the relation that is the limit reached by the iteration of the inflationary operator IF_{ϕ} .

Ranks

Let $\phi(R, \mathbf{x})$ be a formula defining an operator F_{ϕ} and IF_{ϕ} be the associated *inflationary* operator given by

 $IF_{\phi}(S) = S \cup F_{\phi}(S)$

In a structure \mathbb{A} , we define for each $\mathbf{a} \in A^k$ a *rank* $|\mathbf{a}|_{\phi}$.

The least n such that $\mathbf{a} \in IF^{\alpha}$, if there is such an n and ∞ otherwise.

Stage Comparison

We define the two *stage comparison* relations \leq and \prec by:

 $\mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}^{\infty} \land |\mathbf{a}|_{\phi} \leq |\mathbf{b}|_{\phi};$

 $\mathbf{a} \prec \mathbf{b} \Leftrightarrow |\mathbf{a}|_{\phi} < |\mathbf{b}|_{\phi}.$

These two relations can themselves be defined in IFP.

Stage Comparison

 $\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{a} \prec \mathbf{b}\}).$

 $\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a} \preceq \mathbf{b}')\}).$

Together, these give:

 $\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a}' \preceq \mathbf{b}')\})).$

This is an inductive definition of \leq .

A similar inductive definition is obtained from \prec .

19

Stage Comparison in LFP

In the inductive definition of \leq :

$\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a}' \preceq_{\phi} \mathbf{b}')\}))$

we can replace the *negative* occurrences of $\mathbf{a} \leq \mathbf{b}$ with $\neg(\mathbf{b} \prec \mathbf{a})$, and similarly, in the definition of \prec replace negative occurrences of \prec with positive occurrences of \leq

as long as we can define the maximal rank

Maximal Rank

There is a formula $\mu(\mathbf{y})$, which defines the set of tuples of maximal rank.

 $IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \preceq \mathbf{a}\}) \subseteq IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \prec \mathbf{a}\}).$

Replace the negative occurrence of $\mathbf{b} \leq \mathbf{a}$ by $\neg(\mathbf{a} < \mathbf{b})$.

20

]
	21
Reading List for this Handout	
1. Immerman. Chapter 4.	
2 Libkin Sections 10.2 and 10.3	
2. Children and Sectors 2.C	
3. Gradel et al. Secton 2.6.	