Topics in Logic and Complexity Handout 6

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, $|A|$ is even.
- There is no sentence ϕ that defines exactly the connected graphs.

How do we prove these facts?

Our next aim is to develop the tools that enable such proofs.

Quantifier Rank

The quantifier rank of a formula ϕ, written $\operatorname{qr}(\phi)$ is defined inductively as follows:

1. if ϕ is atomic then $\operatorname{qr}(\phi)=0$,
2. if $\phi=\neg \psi$ then $\operatorname{qr}(\phi)=\operatorname{qr}(\psi)$,
3. if $\phi=\psi_{1} \vee \psi_{2}$ or $\phi=\psi_{1} \wedge \psi_{2}$ then $\operatorname{qr}(\phi)=\max \left(\operatorname{qr}\left(\psi_{1}\right), \operatorname{qr}\left(\psi_{2}\right)\right)$.
4. if $\phi=\exists x \psi$ or $\phi=\forall x \psi$ then $\operatorname{qr}(\phi)=\operatorname{qr}(\psi)+1$

More informally, $\mathrm{qr}(\phi)$ is the maximum depth of nesting of quantifiers inside ϕ.

Formulas of Bounded Quantifier Rank

Note: For the rest of this lecture, we assume that our signature consists only of relation and constant symbols. That is, there are no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences ϕ with $\operatorname{qr}(\phi) \leq q$.

To be precise, we prove by induction on q that for all m, there are only finitely many formulas of quantifier rank q with at most m free variables.

Formulas of Bounded Quantifier Rank

If $\operatorname{qr}(\phi)=0$ then ϕ is a Boolean combination of atomic formulas. If it is has m variables, it is equivalent to a formula using the variables x_{1}, \ldots, x_{m}. There are finitely many formulas, up to logical equivalence.

Suppose $\operatorname{qr}(\phi)=q+1$ and the free variables of ϕ are among x_{1}, \ldots, x_{m}. Then ϕ is a Boolean combination of formulas of the form

$$
\exists x_{m+1} \psi
$$

where ψ is a formula with $\operatorname{qr}(\psi)=q$ and free variables $x_{1}, \ldots, x_{m}, x_{m+1}$.

By induction hypothesis, there are only finitely many such formulas, and therefore finitely many Boolean combinations.

Equivalence Relation

For two structures \mathbb{A} and \mathbb{B}, we say $\mathbb{A} \equiv_{q} \mathbb{B}$ if for any sentence ϕ with $\operatorname{qr}(\phi) \leq q$,

$$
\mathbb{A} \models \phi \text { if, and only if, } \mathbb{B} \models \phi
$$

More generally, if \mathbf{a} and \mathbf{b} are m-tuples of elements from \mathbb{A} and \mathbb{B} respectively, then we write $(\mathbb{A}, \mathbf{a}) \equiv_{q}(\mathbb{B}, \mathbf{b})$ if for any formula ϕ with m free variables $\operatorname{qr}(\phi) \leq q$,

$$
\mathbb{A} \models \phi[\mathbf{a}] \text { if, and only if, } \mathbb{B} \models \phi[\mathbf{b}] .
$$

Partial Isomorphisms

A map f is a partial isomorphism between structures \mathbb{A} and \mathbb{B}, if

- the domain of $f=\left\{a_{1}, \ldots, a_{l}\right\} \subseteq A$, including the interpretation of all constants;
- the range of $f=\left\{b_{1}, \ldots, b_{l}\right\} \subseteq B$, including the interpretation of all constants; and
- f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple a to a tuple \mathbf{b}, then for any quantifier-free formula θ

$$
\mathbb{A} \models \theta[\mathbf{a}] \text { if, and only if, } \mathbb{B} \models \theta[\mathbf{b}] .
$$

Ehrenfeucht-Fraïssé Games

The q-round Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

- There are two players called Spoiler and Duplicator.
- At the i th round, Spoiler chooses one of the structures (say \mathbb{B}) and one of the elements of that structure (say b_{i}).
- Duplicator must respond with an element of the other structure (say a_{i}).
- If, after q rounds, the map $a_{i} \mapsto b_{i}$ is a partial isomorphism, then Duplicator has won the game, otherwise Spoiler has won.

Equivalence and Games

Write $\mathbb{A} \sim_{q} \mathbb{B}$ to denote the fact that Duplicator has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B}.

The relation \sim_{q} is, in fact, an equivalence relation.

Theorem (Fraïssé 1954; Ehrenfeucht 1961)
$\mathbb{A} \sim_{q} \mathbb{B}$ if, and only if, $\mathbb{A} \equiv_{q} \mathbb{B}$

While one direction $\mathbb{A} \sim_{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{q} \mathbb{B}$ is true for an arbitrary vocabulary, the other direction assumes that the vocabulary is finite and has no function symbols.

Proof

To prove $\mathbb{A} \sim_{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{q} \mathbb{B}$, it suffices to show that if there is a
sentence ϕ with $\operatorname{qr}(\phi) \leq q$ such that

$$
\mathbb{A} \models \phi \quad \text { and } \quad \mathbb{B} \not \models \phi
$$

then Spoiler has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B}.

Assume that ϕ is in negation normal form, i.e. all negations are in front of atomic formulas.

Proof

We prove by induction on q the stronger statement that if ϕ is a formula with $\operatorname{qr}(\phi) \leq q$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ are tuples of elements from \mathbb{A} and \mathbb{B} respectively such that

$$
\mathbb{A} \models \phi[\mathbf{a}] \quad \text { and } \quad \mathbb{B} \not \models \phi[\mathbf{b}]
$$

then Spoiler has a winning strategy in the q-round Ehrenfeucht game which starts from a position in which a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m} have already been selected.

Using Games

To show that a class of structures S is not definable in FO, we find, for every q, a pair of structures \mathbb{A}_{q} and \mathbb{B}_{q} such that

- $\mathbb{A}_{q} \in S, \mathbb{B}_{q} \in \bar{S}$; and
- Duplicator wins a q-round game on \mathbb{A}_{q} and \mathbb{B}_{q}.

This shows that S is not closed under the relation \equiv_{q} for any q. Fact:
S is definable by a first order sentence if, and only if, S is closed under the relation \equiv_{q} for some q.

The direction from right to left requires a finite, function-free vocabulary.

Evenness

Let \mathbb{A} be a structure in the empty vocabulary with q elements and \mathbb{B} be a structure with $q+1$ elements.

Then, it is easy to see that $\mathbb{A} \sim_{q} \mathbb{B}$.

It follows that there is no first-order sentence that defines the structures with an even number of elements.

If $S \subseteq \mathbb{N}$ is a set such that

$$
\{\mathbb{A}||\mathbb{A}| \in S\}
$$

is definable by a first-order sentence then S is finite or co-finite.

Linear Orders

Let L_{n} denote the structure in one binary relation \leq which is a linear order of n elements. Then $L_{6} \not \equiv_{3} L_{7}$ but $L_{7} \equiv_{3} L_{8}$.

In general, for $m, n \geq 2^{p}-1$,

$$
L_{m} \equiv_{p} L_{n}
$$

Duplicator's strategy is to maintain the following condition after r rounds of the game:
for $1 \leq i<j \leq r$,

- either length $\left(a_{i}, a_{j}\right)=\operatorname{length}\left(b_{i}, b_{j}\right)$
- or length $\left(a_{i}, a_{j}\right)$, length $\left(b_{i}, b_{j}\right) \geq 2^{p-r}-1$

Evenness is not first order definable, even on linear orders.

