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Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are

not definable in first-order logic.

• There is no sentence φ of first-order logic such that A |= φ if,

and only if, |A| is even.

• There is no sentence φ that defines exactly the connected

graphs.

How do we prove these facts?

Our next aim is to develop the tools that enable such proofs.
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Quantifier Rank

The quantifier rank of a formula φ, written qr(φ) is defined

inductively as follows:

1. if φ is atomic then qr(φ) = 0,

2. if φ = ¬ψ then qr(φ) = qr(ψ),

3. if φ = ψ1 ∨ ψ2 or φ = ψ1 ∧ ψ2 then

qr(φ) = max(qr(ψ1), qr(ψ2)).

4. if φ = ∃xψ or φ = ∀xψ then qr(φ) = qr(ψ) + 1

More informally, qr(φ) is the maximum depth of nesting of

quantifiers inside φ.
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Formulas of Bounded Quantifier Rank

Note: For the rest of this lecture, we assume that our signature

consists only of relation and constant symbols. That is, there are

no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for

each q, there are (up to logical equivalence) only finitely many

sentences φ with qr(φ) ≤ q.

To be precise, we prove by induction on q that for all m, there are

only finitely many formulas of quantifier rank q with at most m

free variables.
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Formulas of Bounded Quantifier Rank

If qr(φ) = 0 then φ is a Boolean combination of atomic formulas. If

it is has m variables, it is equivalent to a formula using the

variables x1, . . . , xm. There are finitely many formulas, up to logical

equivalence.

Suppose qr(φ) = q + 1 and the free variables of φ are among

x1, . . . , xm. Then φ is a Boolean combination of formulas of the

form

∃xm+1ψ

where ψ is a formula with qr(ψ) = q and free variables

x1, . . . , xm, xm+1.

By induction hypothesis, there are only finitely many such

formulas, and therefore finitely many Boolean combinations.

6

Equivalence Relation

For two structures A and B, we say A ≡q B if for any sentence φ

with qr(φ) ≤ q,

A |= φ if, and only if, B |= φ.

More generally, if a and b are m-tuples of elements from A and B

respectively, then we write (A, a) ≡q (B,b) if for any formula φ

with m free variables qr(φ) ≤ q,

A |= φ[a] if, and only if, B |= φ[b].
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Partial Isomorphisms

A map f is a partial isomorphism between structures A and B, if

• the domain of f = {a1, . . . , al} ⊆ A, including the

interpretation of all constants;

• the range of f = {b1, . . . , bl} ⊆ B, including the interpretation

of all constants; and

• f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple a to a tuple

b, then for any quantifier-free formula θ

A |= θ[a] if, and only if, B |= θ[b].
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Ehrenfeucht-Fräıssé Games

The q-round Ehrenfeucht game on structures A and B proceeds as

follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B)

and one of the elements of that structure (say bi).

• Duplicator must respond with an element of the other

structure (say ai).

• If, after q rounds, the map ai 7→ bi is a partial isomorphism,

then Duplicator has won the game, otherwise Spoiler has won.
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Equivalence and Games

Write A ∼q B to denote the fact that Duplicator has a winning

strategy in the q-round Ehrenfeucht game on A and B.

The relation ∼q is, in fact, an equivalence relation.

Theorem (Fräıssé 1954; Ehrenfeucht 1961)

A ∼q B if, and only if, A ≡q B

While one direction A ∼q B ⇒ A ≡q B is true for an arbitrary

vocabulary, the other direction assumes that the vocabulary is

finite and has no function symbols.
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Proof

To prove A ∼q B ⇒ A ≡q B, it suffices to show that if there is a

sentence φ with qr(φ) ≤ q such that

A |= φ and B 6|= φ

then Spoiler has a winning strategy in the q-round Ehrenfeucht

game on A and B.

Assume that φ is in negation normal form, i.e. all negations are in front

of atomic formulas.
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Proof

We prove by induction on q the stronger statement that if φ is a

formula with qr(φ) ≤ q and a = (a1, . . . , am) and b = (b1, . . . , bm)

are tuples of elements from A and B respectively such that

A |= φ[a] and B 6|= φ[b]

then Spoiler has a winning strategy in the q-round Ehrenfeucht

game which starts from a position in which a1, . . . , am and

b1, . . . , bm have already been selected.

12

Proof

When q = 0, φ is a quantifier-free formula. Thus, if

A |= φ[a] and B 6|= φ[b]

there is an atomic formula θ that distinguishes the two tuples and

therefore the map taking a to b is not a partial isomorphism.

When q = p+ 1, there is a subformula θ of φ of the form ∃xψ or

∀xψ such that qr(ψ) ≤ p and

A |= θ[a] and B 6|= θ[b]

If θ = ∃xψ, Spoiler chooses a witness for x in A.

If θ = ∀xψ, B |= ∃x¬ψ and Spoiler chooses a witness for x in B.



13

Using Games

To show that a class of structures S is not definable in FO, we find,

for every q, a pair of structures Aq and Bq such that

• Aq ∈ S, Bq ∈ S; and

• Duplicator wins a q-round game on Aq and Bq.

This shows that S is not closed under the relation ≡q for any q.

Fact:

S is definable by a first order sentence if, and only if, S is

closed under the relation ≡q for some q.

The direction from right to left requires a finite, function-free

vocabulary.
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Evenness

Let A be a structure in the empty vocabulary with q elements and B

be a structure with q + 1 elements.

Then, it is easy to see that A ∼q B.

It follows that there is no first-order sentence that defines the

structures with an even number of elements.

If S ⊆ N is a set such that

{A | |A| ∈ S}

is definable by a first-order sentence then S is finite or co-finite.
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Linear Orders

Let Ln denote the structure in one binary relation ≤ which is a

linear order of n elements. Then L6 6≡3 L7 but L7 ≡3 L8.

In general, for m,n ≥ 2p − 1,

Lm ≡p Ln

Duplicator’s strategy is to maintain the following condition after r

rounds of the game:

for 1 ≤ i < j ≤ r,

• either length(ai, aj) = length(bi, bj)

• or length(ai, aj), length(bi, bj) ≥ 2p−r − 1

Evenness is not first order definable, even on linear orders.
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