3

Topics in Logic and Complexity Handout 6

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Quantifier Rank

The *quantifier rank* of a formula ϕ , written $qr(\phi)$ is defined inductively as follows:

- 1. if ϕ is atomic then $qr(\phi) = 0$,
- 2. if $\phi = \neg \psi$ then $qr(\phi) = qr(\psi)$,
- 3. if $\phi = \psi_1 \lor \psi_2$ or $\phi = \psi_1 \land \psi_2$ then $qr(\phi) = max(qr(\psi_1), qr(\psi_2)).$
- 4. if $\phi = \exists x \psi$ or $\phi = \forall x \psi$ then $qr(\phi) = qr(\psi) + 1$

More informally, $qr(\phi)$ is the maximum depth of nesting of quantifiers inside ϕ .

Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, |A| is even.
- There is no sentence ϕ that defines exactly the *connected* graphs.

How do we *prove* these facts?

Our next aim is to develop the tools that enable such proofs.

Formulas of Bounded Quantifier Rank

Note: For the rest of this lecture, we assume that our signature consists only of relation and constant symbols. That is, there are *no function symbols of non-zero arity*.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences ϕ with $qr(\phi) \leq q$.

To be precise, we prove by induction on q that for all m, there are only finitely many formulas of quantifier rank q with at most mfree variables.

7

Formulas of Bounded Quantifier Rank

If $qr(\phi) = 0$ then ϕ is a Boolean combination of atomic formulas. If it is has m variables, it is equivalent to a formula using the variables x_1, \ldots, x_m . There are finitely many formulas, *up to logical equivalence*.

Suppose $qr(\phi) = q + 1$ and the *free variables* of ϕ are among x_1, \ldots, x_m . Then ϕ is a Boolean combination of formulas of the form

$\exists x_{m+1}\psi$

where ψ is a formula with $qr(\psi) = q$ and free variables $x_1, \ldots, x_m, x_{m+1}$.

By induction hypothesis, there are only finitely many such formulas, and therefore finitely many Boolean combinations.

Partial Isomorphisms

A map f is a partial isomorphism between structures \mathbb{A} and \mathbb{B} , if

- the domain of $f = \{a_1, \ldots, a_l\} \subseteq A$, including the interpretation of all constants;
- the range of $f = \{b_1, \ldots, b_l\} \subseteq B$, including the interpretation of all constants; and
- f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple **a** to a tuple **b**, then for any *quantifier-free* formula θ

$\mathbb{A} \models \theta[\mathbf{a}]$ if, and only if, $\mathbb{B} \models \theta[\mathbf{b}]$.

6

8

Equivalence Relation

For two structures \mathbb{A} and \mathbb{B} , we say $\mathbb{A} \equiv_q \mathbb{B}$ if for any sentence ϕ with $\operatorname{qr}(\phi) \leq q$,

 $\mathbb{A} \models \phi$ if, and only if, $\mathbb{B} \models \phi$.

More generally, if **a** and **b** are *m*-tuples of elements from A and B respectively, then we write $(\mathbb{A}, \mathbf{a}) \equiv_q (\mathbb{B}, \mathbf{b})$ if for any formula ϕ with *m* free variables $qr(\phi) \leq q$,

 $\mathbb{A} \models \phi[\mathbf{a}]$ if, and only if, $\mathbb{B} \models \phi[\mathbf{b}]$.

Ehrenfeucht-Fraïssé Games

The $q\text{-}\mathrm{round}$ Ehrenfeucht game on structures \mathbbm{A} and \mathbbm{B} proceeds as follows:

- There are two players called Spoiler and Duplicator.
- At the *i*th round, Spoiler chooses one of the structures (say \mathbb{B}) and one of the elements of that structure (say b_i).
- Duplicator must respond with an element of the other structure (say *a_i*).
- If, after q rounds, the map $a_i \mapsto b_i$ is a partial isomorphism, then Duplicator has won the game, otherwise Spoiler has won.

9

11

Equivalence and Games

Write $\mathbb{A} \sim_q \mathbb{B}$ to denote the fact that *Duplicator* has a *winning* strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} . The relation \sim_q is, in fact, an equivalence relation.

Theorem (Fraïssé 1954; Ehrenfeucht 1961) $\mathbb{A} \sim_q \mathbb{B}$ if, and only if, $\mathbb{A} \equiv_q \mathbb{B}$

While one direction $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$ is true for an arbitrary vocabulary, the other direction assumes that the vocabulary is *finite* and has *no function symbols*.

Proof

We prove by induction on q the stronger statement that if ϕ is a formula with $qr(\phi) \leq q$ and $\mathbf{a} = (a_1, \ldots, a_m)$ and $\mathbf{b} = (b_1, \ldots, b_m)$ are tuples of elements from \mathbb{A} and \mathbb{B} respectively such that

 $\mathbb{A} \models \phi[\mathbf{a}] \quad \text{and} \quad \mathbb{B} \not\models \phi[\mathbf{b}]$

then *Spoiler* has a winning strategy in the *q*-round Ehrenfeucht game which starts from a position in which a_1, \ldots, a_m and b_1, \ldots, b_m have *already been selected*.

12

Proof

To prove $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$, it suffices to show that if there is a sentence ϕ with $qr(\phi) \leq q$ such that

 $\mathbb{A} \models \phi \quad \text{and} \quad \mathbb{B} \not\models \phi$

then *Spoiler* has a winning strategy in the *q*-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} .

Assume that ϕ is in *negation normal form*, i.e. all negations are in front of atomic formulas.

Proof

When q = 0, ϕ is a quantifier-free formula. Thus, if

 $\mathbb{A} \models \phi[\mathbf{a}] \quad \text{and} \quad \mathbb{B} \not\models \phi[\mathbf{b}]$

there is an *atomic* formula θ that distinguishes the two tuples and therefore the map taking **a** to **b** is not a *partial isomorphism*.

When q = p + 1, there is a subformula θ of ϕ of the form $\exists x\psi$ or $\forall x\psi$ such that $qr(\psi) \leq p$ and

$\mathbb{A} \models \theta[\mathbf{a}] \quad \text{and} \quad \mathbb{B} \not\models \theta[\mathbf{b}]$

If $\theta = \exists x \psi$, *Spoiler* chooses a witness for x in \mathbb{A} .

If $\theta = \forall x \psi$, $\mathbb{B} \models \exists x \neg \psi$ and *Spoiler* chooses a witness for x in \mathbb{B} .

Using Games

To show that a class of structures S is not definable in FO, we find, for every q, a pair of structures \mathbb{A}_q and \mathbb{B}_q such that

• $\mathbb{A}_q \in S, \mathbb{B}_q \in \overline{S};$ and

• *Duplicator* wins a *q*-round game on \mathbb{A}_q and \mathbb{B}_q .

This shows that S is not closed under the relation \equiv_q for any q.

Fact:

S is definable by a first order sentence if, and only if, *S* is closed under the relation \equiv_q for some *q*.

The direction from right to left requires a *finite*, *function-free* vocabulary.

Linear Orders

Let L_n denote the structure in one binary relation \leq which is a linear order of *n* elements. Then $L_6 \not\equiv_3 L_7$ but $L_7 \equiv_3 L_8$.

In general, for $m, n \ge 2^p - 1$,

 $L_m \equiv_p L_n$

Duplicator's strategy is to maintain the following condition after r rounds of the game:

for $1 \leq i < j \leq r$,

- *either* length $(a_i, a_j) =$ length (b_i, b_j)
- or $\operatorname{length}(a_i, a_j), \operatorname{length}(b_i, b_j) \ge 2^{p-r} 1$

Evenness is not first order definable, even on linear orders.

16

Evenness

Let A be a structure in the *empty vocabulary* with q elements and B be a structure with q + 1 elements.

Then, it is easy to see that $\mathbb{A} \sim_q \mathbb{B}$.

It follows that there is no first-order sentence that defines the structures with an even number of elements.

If $S \subseteq \mathbb{N}$ is a set such that

$\{\mathbb{A} \mid |\mathbb{A}| \in S\}$

is definable by a first-order sentence then S is finite or co-finite.

15

13

Reading List for this Handout

- 1. Ebbinghaus and Flum. Chapter 2.
- 2. Libkin. Chapter 3.
- 3. Grädel et al. Section 2.3.