Topics in Logic and Complexity Handout 5

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Fagin's Theorem

Theorem (Fagin)

A class \mathcal{C} of finite structures is definable by a sentence of existential second-order logic if, and only if, it is decidable by a
nondeterminisitic machine running in polynomial time.

$$
\mathrm{ESO}=\mathrm{NP}
$$

One direction is easy: Given \mathbb{A} and $\exists P_{1} \ldots \exists P_{m} \phi$.
a nondeterministic machine can guess an interpretation for P_{1}, \ldots, P_{m} and then verify ϕ.

Fagin's Theorem

Given a machine M and an integer k, there is an ESO sentence ϕ such that $\mathbb{A} \models \phi$ if, and only if, M accepts $[\mathbb{A}]_{<}$, for some order $<$ in n^{k} steps.

We construct a first-order formula $\phi_{M, k}$ such that

$$
\begin{aligned}
(\mathbb{A},<, \mathbf{X}) \models \phi_{M, k} \quad \Leftrightarrow \quad & \mathbf{X} \text { codes an accepting computation of } M \\
& \text { of length at most } n^{k} \text { on input }[\mathbb{A}]_{<}
\end{aligned}
$$

So, $\mathbb{A} \models \exists<\exists \mathbf{X} \phi_{M, k}$ if, and only if, there is some order $<$ on \mathbb{A} so that M accepts $[\mathbb{A}]_{<}$in time n^{k}.

Order

The formula $\phi_{M, k}$ is built up as the conjunction of a number of formulas. The first of these simply says that $<$ is a linear order

$$
\begin{aligned}
& \forall x(\neg x<x) \wedge \\
& \forall x \forall y(x<y \rightarrow \neg y<x) \wedge \\
& \forall x \forall y(x<y \vee y<x \vee x=y) \\
& \forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<z)
\end{aligned}
$$

We can use a linear order on the elements of \mathbb{A} to define a lexicographic order on k-tuples.

Ordering Tuples

If $\mathbf{x}=x_{1}, \ldots, x_{k}$ and $\mathbf{y}=y_{1}, \ldots, y_{k}$ are k-tuples of variables, we use $\mathbf{x}=\mathbf{y}$ as shorthand for the formula $\bigwedge_{1 \leq i \leq k} x_{i}=y_{i}$ and $\mathbf{x}<\mathbf{y}$ as shorthand for the formula

$$
\bigvee_{1 \leq i \leq k}\left(\left(\bigwedge_{j<i} x_{j}=y_{j}\right) \wedge x_{i}<y_{i}\right)
$$

We also write $\mathbf{y}=\mathbf{x}+1$ for the following formula:

$$
\mathrm{x}<\mathrm{y} \wedge \forall \mathrm{z}(\mathrm{x}<\mathrm{z} \rightarrow(\mathrm{y}=\mathrm{z} \vee \mathrm{y}<\mathrm{z}))
$$

Constructing the Formula

Let $M=(K, \Sigma, s, \delta)$.
The tuple \mathbf{X} of second-order variables appearing in $\phi_{M, k}$ contains the following:
$S_{q} \quad$ a k-ary relation symbol for each $q \in K$
$T_{\sigma} \quad$ a $2 k$-ary relation symbol for each $\sigma \in \Sigma$
$H \quad$ a $2 k$-ary relation symbol

Initial state is s and the head is initially at the beginning of the tape.

$$
\forall \mathrm{x}\left((\forall \mathbf{y} \mathbf{x} \leq \mathbf{y}) \rightarrow S_{s}(\mathrm{x}) \wedge H(\mathrm{x}, \mathrm{x})\right)
$$

The head is never in two places at once

$$
\forall \mathbf{x} \forall \mathbf{y}(H(\mathbf{x}, \mathbf{y}) \rightarrow(\forall \mathbf{z}(\mathbf{y} \neq \mathbf{z}) \rightarrow(\neg H(\mathbf{x}, \mathbf{z}))))
$$

The machine is never in two states at once

$$
\forall \mathbf{x} \bigwedge_{q}\left(S_{q}(\mathbf{x}) \rightarrow \bigwedge_{q^{\prime} \neq q}\left(\neg S_{q^{\prime}}(\mathbf{x})\right)\right)
$$

Each tape cell contains only one symbol

$$
\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma}\left(T_{\sigma}(\mathbf{x}, \mathbf{y}) \rightarrow \bigwedge_{\sigma^{\prime} \neq \sigma}\left(\neg T_{\sigma^{\prime}}(\mathbf{x}, \mathbf{y})\right)\right)
$$

Initial Tape Contents

The initial contents of the tape are $[\mathbb{A}]_{<}$.

$$
\begin{array}{rl}
\forall \mathbf{x} & \mathbf{x} \leq n \rightarrow T_{1}(\mathbf{1}, \mathbf{x}) \wedge \\
& \mathbf{x} \leq n^{a} \rightarrow\left(T_{1}(\mathbf{1}, \mathbf{x}+n+1) \leftrightarrow R_{1}\left(\left.\mathbf{x}\right|_{a}\right)\right)
\end{array}
$$

where,

$$
\mathbf{x}<n^{a} \quad: \bigwedge_{i \leq(k-a)} x_{i}=0
$$

The tape does not change except under the head

$$
\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z}\left(\mathbf{y} \neq \mathbf{z} \rightarrow\left(\bigwedge_{\sigma}\left(H(\mathbf{x}, \mathbf{y}) \wedge T_{\sigma}(\mathbf{x}, \mathbf{z}) \rightarrow T_{\sigma}(\mathbf{x}+1, \mathbf{z})\right)\right)\right.
$$

Each step is according to δ.

$$
\begin{aligned}
\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma} \bigwedge_{q}(& \left.H(\mathbf{x}, \mathbf{y}) \wedge S_{q}(\mathbf{x}) \wedge T_{\sigma}(\mathbf{x}, \mathbf{y})\right) \\
& \rightarrow \bigvee_{\Delta}\left(H\left(\mathbf{x}+1, \mathbf{y}^{\prime}\right) \wedge S_{q^{\prime}}(\mathbf{x}+1) \wedge T_{\sigma^{\prime}}(\mathbf{x}+1, \mathbf{y})\right)
\end{aligned}
$$

NP

Recall that a languge L is in NP if, and only if,

$$
L=\{x \mid \exists y R(x, y)\}
$$

where R is polynomial-time decidable and polynomially-balanced.

Fagin's theorem tells us that polynomial-time decidability can, in some sense, be replaced by first-order definability.

co-NP

USO—universal second-order logic consists of those formulas of second-order logic of the form:

$$
\forall X_{1} \cdots \forall X_{k} \phi
$$

where ϕ is a first-order formula.

A corollary of Fagin's theorem is that a class \mathcal{C} of finite structures is definable by a sentence of existential second-order logic if, and only if, it is decidable by a nondeterminisitic machine running in polynomial time.

$$
\mathrm{USO}=\mathrm{co}-\mathrm{NP}
$$

Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order quantifier prefixes.
$\Sigma_{1}^{1}=\mathrm{ESO}$
$\Pi_{1}^{1}=$ USO
Σ_{n+1}^{1} is the collection of properties definable by a sentence of the form: $\exists X_{1} \cdots \exists X_{k} \phi$ where ϕ is a Π_{n}^{1} formula.
Π_{n+1}^{1} is the collection of properties definable by a sentence of the form: $\forall X_{1} \cdots \forall X_{k} \phi$ where ϕ is a Σ_{n}^{1} formula.

Note: every formula of second-order logic is Σ_{n}^{1} and Π_{n}^{1} for some n.

Polynomial Hierarchy

We have, for each n :

$$
\Sigma_{n}^{1} \cup \Pi_{n}^{1} \quad \subseteq \quad \Sigma_{n+1}^{1} \cap \Pi_{n+1}^{1}
$$

The classes together form the polynomial hierarchy or PH.
$N P \subseteq P H \subseteq P S P A C E$
$P=N P \quad$ if, and only if, $P=P H$

