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Complexity of First-Order Logic

The following problem:

FO satisfaction

Input: a structure A and a first-order sentence φ

Decide: if A |= φ

is PSPACE-complete.

It follows from the O(lnm) and O(m logn) space algorithm that the

problem is in PSPACE.

How do we prove completeness?
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QBF

We define quantified Boolean formulas inductively as follows, from

a set X of propositional variables.

• A propositional constant T or F is a formula

• A propositional variable X ∈ X is a formula

• If φ and ψ are formulas then so are: ¬φ, φ ∧ ψ and φ ∨ ψ

• If φ is a formula and X is a variable then ∃X φ and ∀X φ are

formulas.

Say that an occurrence of a variable X is free in a formula φ if it is

not within the scope of a quantifier of the form ∃X or ∀X .
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QBF

Given a quantified Boolean formula φ and an assignment of truth

values to its free variables, we can ask whether φ evaluates to true

or false.

In particular, if φ has no free variables, then it is equivalent to

either true or false.

QBF is the following decision problem:

Input: a quantified Boolean formula φ with no free

variables.

Decide: whether φ evaluates to true.
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Complexity of QBF

Note that a Boolean formula φ without quantifiers and with

variables X1, . . . , Xn is satisfiable if, and only if, the formula

∃X1 · · · ∃Xn φ is true.

Similarly, φ is valid if, and only if, the formula

∀X1 · · · ∀Xn φ is true.

Thus, SAT ≤L QBF and VAL ≤L QBF and so QBF is NP-hard and

co-NP-hard.

In fact, QBF is PSPACE-complete.
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QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that

maintains a 1-bit register X for each Boolean variable appearing in

the input formula φ and evaluates φ in the natural fashion.

The crucial cases are:

• If φ is ∃X ψ then return T if either (X ← T ; evaluate ψ) or

(X ← F ; evaluate ψ) returns T.

• If φ is ∀X ψ then return T if both (X ← T ; evaluate ψ) and

(X ← F ; evaluate ψ) return T.
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PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:

Given a machine M with a polynomial space bound and an

input x, we can define a quantified Boolean formula φM
x

which evaluates to true if, and only if, M accepts x.

Moreover, φM
x

can be computed from x in polynomial time

(or even logarithmic space).

The number of distinct configurations of M on input x is bounded

by 2n
k

for some k (n = |x|).

Each configuration can be represented by nk bits.
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Constructing φM

x

We use tuples A,B of nk Boolean variables each to encode

configurations of M .

Inductively, we define a formula ψi(A,B) which is true if the

configuration coded by B is reachable from that coded by A in at

most 2i steps.

ψ0(A,B) ≡ “A = B
′′ ∨ “A→M B

′′

ψi+1(A,B) ≡ ∃Z∀X∀Y [(X = A ∧Y = Z) ∨ (X = Z ∧Y = B)

⇒ ψi(X,Y)]

φ ≡ ψnk(A,B) ∧ “A = start′′ ∧ “B = accept′′
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Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.

To show that it is PSPACE-complete, it suffices to show that

QBF ≤L FO sat.

The reduction maps a quantified Boolean formula φ to a pair

(A, φ∗) where A is a structure with two elements: 0 and 1

interpreting two constants f and t respectively.

φ∗ is obtained from φ by a simple inductive definition.
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Expressive Power of FO

For any fixed sentence φ of first-order logic, the class of structures

Mod(φ) is in L.

There are computationally easy properties that are not definable in

first-order logic.

• There is no sentence φ of first-order logic such that A |= φ if,

and only if, |A| is even.

• There is no formula φ(E, x, y) that defines the transitive

closure of a binary relation E.

We will see proofs of these facts later on.
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Second-Order Logic

We extend first-order logic by a set of relational variables.

For each m ∈ N there is an infinite collection of variables

Vm = {V m
1 , V m

2 , . . .} of arity m.

Second-order logic extends first-order logic by allowing second-order

quantifiers

∃X φ for X ∈ Vm

A structure A satisfies ∃X φ if there is an m-ary relation R on the

universe of A such that (A, X → R) satisfies φ.
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Existential Second-Order Logic

ESO—existential second-order logic consists of those formulas of

second-order logic of the form:

∃X1 · · · ∃Xk φ

where φ is a first-order formula.
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Examples

Evennness

This formula is true in a structure if, and only if, the size of the

domain is even.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z)→ y = z

∀x∀y∀zB(x, z) ∧B(y, z)→ x = y

∀x∀yS(x) ∧B(x, y)→ ¬S(y)

∀x∀y¬S(x) ∧B(x, y)→ S(y)
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Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and

only if, there is an E-path from a to b.

∃P ∀x∀y P (x, y)→ E(x, y)

∃xP (a, x) ∧ ∃xP (x, b) ∧ ¬∃xP (x, a) ∧ ¬∃xP (b, x)

∀x∀y(P (x, y)→ ∀z(P (x, z)→ y = z))

∀x∀y(P (x, y)→ ∀z(P (z, x)→ y = z))

∀x((x 6= a ∧ ∃yP (x, y))→ ∃zP (z, x))

∀x((x 6= b ∧ ∃yP (y, x))→ ∃zP (x, z))
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Examples

3-Colourability

The following formula is true in a graph (V,E) if, and only if, it is

3-colourable.

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x( ¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → ( ¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))
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