Topics in Logic and Complexity
Handout 4

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Complexity of First-Order Logic

The following problem:
FO satisfaction

Input: a structure A and a first-order sentence ¢
Decide: if A = ¢

is PSPACE-complete.
It follows from the O(In™) and O(mlogn) space algorithm that the
problem is in PSPACE.

How do we prove completeness?

QBF

We define quantified Boolean formulas inductively as follows, from

a set X' of propositional variables.
e A propositional constant T or F is a formula
e A propositional variable X € & is a formula
e If ¢ and 1 are formulas then so are: =¢, ¢ A and ¢ V¢
e If ¢ is a formula and X is a variable then 3X ¢ and VX ¢ are

formulas.

Say that an occurrence of a variable X is free in a formula ¢ if it is
not within the scope of a quantifier of the form 3X or VX.

QBF

Given a quantified Boolean formula ¢ and an assignment of truth
values to its free variables, we can ask whether ¢ evaluates to true

or false.

In particular, if ¢ has no free variables, then it is equivalent to

either true or false.

QBEF is the following decision problem:

Input: a quantified Boolean formula ¢ with no free
variables.

Decide: whether ¢ evaluates to true.

Complexity of QBF

Note that a Boolean formula ¢ without quantifiers and with
variables X1,..., X, is satisfiable if, and only if, the formula

X, ---3X, ¢ is true.
Similarly, ¢ is valid if, and only if, the formula

VXi1---VX, ¢ s true.

Thus, SAT <;, QBF and VAL <; QBF and so QBF is NP-hard and
co-NP-hard.

In fact, QBF is PSPACE-complete.

QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that
maintains a 1-bit register X for each Boolean variable appearing in
the input formula ¢ and evaluates ¢ in the natural fashion.

The crucial cases are:

o If ¢ is X @ then return T if either (X « T ; evaluate ¢)) or
(X —F ; evaluate ¢) returns T.

o If ¢ is VX ¢ then return T if both (X «— T ; evaluate) and
(X —F ; evaluate ¢) return T.

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:

Given a machine M with a polynomial space bound and an
input z, we can define a quantified Boolean formula ¢
which evaluates to true if, and only if, M accepts x.

Moreover, ¢ can be computed from x in polynomial time

(or even logarithmic space).

The number of distinct configurations of M on input x is bounded
by 27" for some k (n =|z|).

Each configuration can be represented by n* bits.

Constructing ¢

We use tuples A, B of n* Boolean variables each to encode

configurations of M.

Inductively, we define a formula v; (A, B) which is true if the
configuration coded by B is reachable from that coded by A in at

most 2° steps.

Po(A,B) = “A=B"V*“A -, B
Yis1(A,B) = JZYXVY [(X=AAY=Z)V(X=ZAY =B)
¢ = Yoe(A,B)A“A =start” A “B = accept”

9 10
Reducing QBF to FO satisfaction Expressive Power of FO
We have seen that FO satisfaction is in PSPACE. For any fired sentence ¢ of first-order logic, the class of structures
To show that it is PSPACE-complete, it suffices to show that Mod(¢) is in L.
QBF <, FO sat.
There are computationally easy properties that are not definable in
The reduction maps a quantified Boolean formula ¢ to a pair first-order logic.
(A, ¢*) where A is a structure with two elements: 0 and 1 e There is no sentence ¢ of first-order logic such that A [¢ if,
interpreting two constants f and ¢ respectively. and only if, |A| is even.
' . ' . . . e There is no formula ¢(FE, z,y) that defines the transitive
¢* is obtained from ¢ by a simple inductive definition. closure of a binary relation E.
We will see proofs of these facts later on.
11 12

Second-Order Logic

We extend first-order logic by a set of relational variables.

For each m € N there is an infinite collection of variables
V= AV Var L} of arity m.
Second-order logic extends first-order logic by allowing second-order
quantifiers
dX ¢ for X e Y™

A structure A satisfies 3X ¢ if there is an m-ary relation R on the
universe of A such that (A, X — R) satisfies ¢.

Existential Second-Order Logic

ESO—ezistential second-order logic consists of those formulas of
second-order logic of the form:

X, 31X

where ¢ is a first-order formula.

13 14
Examples Examples
Evennness Transitive Closure
This formula is true in a structure if, and only if, the size of the This formula is true of a pair of elements a, b in a structure if, and
domain is even. only if, there is an E-path from a to b.
AB3S VayB(w,y) AVaVyVzB(z,y) A B(z,2) »y ==z 3P VaVy P(x,y) — E(x,y)
VaVyVzB(z,z) N B(y,z) =y FzP(a,z) A JxP(x,b) A =Tz P(x,a) A =3z P(b, x)
VaVyS(x) A B(z,y) — =S(y) VaVy(P(x,y) — Vz(P(z,2) = y = 2))
VaVy-S(z) A B(z,y) — S(y) VaVy(P(x,y) — Vz(P(z,z) — y = 2))
V(e # a A3yP(z,y)) — 32P(z,2))
Va((# b A JyP(y,z)) — 32P(z, 2))
15 16

Examples

3-Colourability
The following formula is true in a graph (V, E) if, and only if, it is
3-colourable.
JdRIB3IG Vz(RxV Bx Vv Gx)A
Va(—(Rx A Bx) AN —~(Bx A Gx) A —(Rx A Gz))A
VaVy(Ezy — (=(Rz A Ry)A
—(Bz A By)A
~(Gz A Gy)))

< —

Reading List for this Handout

1. Papadimitriou. Chapter 5. Section 19.1.
2. Gréadel et al. Section 3.1

