Topics in Logic and Complexity
 Handout 4

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Complexity of First-Order Logic

The following problem:
FO satisfaction
Input: a structure \mathbb{A} and a first-order sentence ϕ
Decide: if $\mathbb{A} \models \phi$
is PSPACE-complete.

It follows from the $O\left(l n^{m}\right)$ and $O(m \log n)$ space algorithm that the problem is in PSPACE.

How do we prove completeness?

QBF

We define quantified Boolean formulas inductively as follows, from a set \mathcal{X} of propositional variables.

- A propositional constant T or F is a formula
- A propositional variable $X \in \mathcal{X}$ is a formula
- If ϕ and ψ are formulas then so are: $\neg \phi, \phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a formula and X is a variable then $\exists X \phi$ and $\forall X \phi$ are formulas.

Say that an occurrence of a variable X is free in a formula ϕ if it is not within the scope of a quantifier of the form $\exists X$ or $\forall X$.

Complexity of QBF

Note that a Boolean formula ϕ without quantifiers and with variables X_{1}, \ldots, X_{n} is satisfiable if, and only if, the formula

$$
\exists X_{1} \cdots \exists X_{n} \phi \quad \text { is true. }
$$

Similarly, ϕ is valid if, and only if, the formula

$$
\forall X_{1} \cdots \forall X_{n} \phi \quad \text { is true. }
$$

Thus, SAT \leq_{L} QBF and VAL \leq_{L} QBF and so QBF is NP-hard and co-NP-hard.

In fact, QBF is PSPACE-complete.

QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that maintains a 1-bit register X for each Boolean variable appearing in the input formula ϕ and evaluates ϕ in the natural fashion.

The crucial cases are:

- If ϕ is $\exists X \psi$ then return T if either $(X \leftarrow \mathrm{~T} ; \quad$ evaluate $\psi)$ or $(X \leftarrow \mathrm{~F} \quad ; \quad$ evaluate ψ) returns T .
- If ϕ is $\forall X \psi$ then return T if both $(X \leftarrow \mathrm{~T} ; \quad$ evaluate $\psi)$ and $(X \leftarrow \mathrm{~F} \quad ; \quad$ evaluate ψ) return T .

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:
Given a machine M with a polynomial space bound and an input x, we can define a quantified Boolean formula ϕ_{x}^{M} which evaluates to true if, and only if, M accepts x.

Moreover, ϕ_{x}^{M} can be computed from x in polynomial time (or even logarithmic space).

The number of distinct configurations of M on input x is bounded by $2^{n^{k}}$ for some $k(n=|x|)$.

Each configuration can be represented by n^{k} bits.

Constructing ϕ_{x}^{M}

We use tuples A, B of n^{k} Boolean variables each to encode configurations of M.

Inductively, we define a formula $\psi_{i}(\mathbf{A}, \mathbf{B})$ which is true if the configuration coded by \mathbf{B} is reachable from that coded by \mathbf{A} in at most 2^{i} steps.

$$
\begin{aligned}
& \psi_{0}(\mathbf{A}, \mathbf{B}) \equiv " \mathbf{A}=\mathbf{B}^{\prime \prime} \vee " \mathbf{A} \rightarrow_{M} \mathbf{B}^{\prime \prime} \\
& \psi_{i+1}(\mathbf{A}, \mathbf{B}) \equiv \exists \mathbf{Z} \forall \mathbf{X} \forall \mathbf{Y}[(\mathbf{X}=\mathbf{A} \wedge \mathbf{Y}=\mathbf{Z}) \vee(\mathbf{X}=\mathbf{Z} \wedge \mathbf{Y}=\mathbf{B}) \\
&\left.\Rightarrow \psi_{i}(\mathbf{X}, \mathbf{Y})\right] \\
& \phi \equiv \psi_{n^{k}}(\mathbf{A}, \mathbf{B}) \wedge " \mathbf{A}=\operatorname{start}^{\prime \prime} \wedge " \mathbf{B}=\operatorname{accept}^{\prime}
\end{aligned}
$$

Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.
To show that it is PSPACE-complete, it suffices to show that $\mathrm{QBF} \leq_{L} \mathrm{FO}$ sat.

The reduction maps a quantified Boolean formula ϕ to a pair $\left(\mathbb{A}, \phi^{*}\right)$ where \mathbb{A} is a structure with two elements: 0 and 1 interpreting two constants f and t respectively.
ϕ^{*} is obtained from ϕ by a simple inductive definition.

Expressive Power of FO

For any fixed sentence ϕ of first-order logic, the class of structures $\operatorname{Mod}(\phi)$ is in L.

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if and only if, $|A|$ is even.
- There is no formula $\phi(E, x, y)$ that defines the transitive closure of a binary relation E.

We will see proofs of these facts later on.

Second-Order Logic

We extend first-order logic by a set of relational variables.
For each $m \in \mathbb{N}$ there is an infinite collection of variables $\mathcal{V}^{m}=\left\{V_{1}^{m}, V_{2}^{m}, \ldots\right\}$ of arity m.

Second-order logic extends first-order logic by allowing second-order quantifiers

$$
\exists X \phi \quad \text { for } X \in \mathcal{V}^{m}
$$

A structure \mathbb{A} satisfies $\exists X \phi$ if there is an m-ary relation R on the universe of \mathbb{A} such that $(\mathbb{A}, X \rightarrow R)$ satisfies ϕ.

Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.
$\exists B \exists S \quad \forall x \exists y B(x, y) \wedge \forall x \forall y \forall z B(x, y) \wedge B(x, z) \rightarrow y=z$

$$
\forall x \forall y \forall z B(x, z) \wedge B(y, z) \rightarrow x=y
$$

$$
\forall x \forall y S(x) \wedge B(x, y) \rightarrow \neg S(y)
$$

$$
\forall x \forall y \neg S(x) \wedge B(x, y) \rightarrow S(y)
$$

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.
$\exists P \quad \forall x \forall y P(x, y) \rightarrow E(x, y)$

$$
\exists x P(a, x) \wedge \exists x P(x, b) \wedge \neg \exists x P(x, a) \wedge \neg \exists x P(b, x)
$$

Examples

$$
\forall x \forall y(P(x, y) \rightarrow \forall z(P(x, z) \rightarrow y=z))
$$

$$
\forall x \forall y(P(x, y) \rightarrow \forall z(P(z, x) \rightarrow y=z))
$$

$$
\forall x((x \neq a \wedge \exists y P(x, y)) \rightarrow \exists z P(z, x))
$$

$$
\forall x((x \neq b \wedge \exists y P(y, x)) \rightarrow \exists z P(x, z))
$$

