## Topics in Logic and Complexity Handout 3

## Anuj Dawar

## P-complete Problems

## Game

Input: A directed graph $G=(V, E)$ with a partition $V=V_{1} \cup V_{2}$ of the vertices and two distinguished vertices $s, t \in V$.

Decide: whether Player 1 can force a token from $s$ to $t$ in the game where when the token is on $v \in V_{1}$, Player 1 moves it along an edge leaving $v$ and when it is on $v \in V_{2}$, Player 2 moves it along an edge leaving $v$.

## Circuit Value Problem

A Circuit is a directed acyclic graph $G=(V, E)$ where each node has in-degree 0,1 or 2 and there is exactly one vertex $t$ with no outgoing edges, along with a labelling which assigns:

- to each node of indegree 0 a value of 0 or 1
- to each node of indegree 1 a label $\neg$
- to each node of indegree 2 a label $\wedge$ or $\vee$

The problem CVP is, given a circuit, decide if the target node $t$ evaluates to 1 .

## NP-complete Problems

Input: A Boolean formula $\phi$
Decide: if there is an assignment of truth values to the variables of $\phi$ that makes $\phi$ true.

## Hamiltonicity

Input: A graph $G=(V, E)$
Decide: if there is a cycle in $G$ that visits every vertex exactly once.

## co-NP-complete Problems

## VAL

Input: A Boolean formula $\phi$
Decide: if every assignment of truth values to the variables of $\phi$ makes $\phi$ true.

Non-3-colourability
Input: A graph $G=(V, E)$
Decide: if there is no function $\chi: V \rightarrow\{1,2,3\}$ such that the two endpoints of every edge are differently coloured.

## PSPACE-complete Problems

Geography is very much like Game but now players are not allowed to visit a vertex that has been previously visitied.
$H E X$ is a game played by two players on a graph $G=(V, E)$ with a source and target $s, t \in V$.
The two players take turns selecting vertices from $V$-neither player can choose a vertex that has been previously selected.
Player 1 wins if, at any point, the vertices she has selected include a path from $s$ to $t$. Player 2 wins if all vertices have been selected and no such path is formed.
The problem is to decide which player has a winning strategy.

## Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

## Computational Complexity

- Measure use of resources (space, time, etc.) on a machine model of computation;
- Complexity of a language - i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures-e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers,
higher-order operators, etc.
There is a fascinating interplay between the views.


## Signature and Structure

In general a signature (or vocabulary) $\sigma$ is a finite sequence of relation, function and constant symbols:

$$
\sigma=\left(R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{p}\right)
$$

where, associated with each relation and function symbol is an arity.

## Structure

A structure $\mathbb{A}$ over the signature $\sigma$ is a tuple:

$$
\mathbb{A}=\left(A, R_{1}^{\mathbb{A}}, \ldots, R_{m}^{\mathbb{A}}, f_{1}^{\mathbb{A}}, \ldots, f_{n}^{\mathbb{A}}, c_{1}^{\mathbb{A}}, \ldots, c_{n}^{\mathbb{A}}\right)
$$

where,

- $A$ is a non-empty set, the universe of the strucure $\mathbb{A}$,
- each $R_{i}^{\mathbb{A}}$ is a relation over $A$ of the appropriate arity.
- each $f_{i}^{\mathbb{A}}$ is a function over $A$ of the appropriate arity.
- each $c_{i}^{\mathbb{A}}$ is an element of $A$.


## First-order Logic

Formulas of first-order logic are formed from the signature $\sigma$ and an infinite collection $X$ of variables as follows.

$$
\text { terms }-c, x, f\left(t_{1}, \ldots, t_{a}\right)
$$

Formulas are defined by induction:

- atomic formulas $-R\left(t_{1}, \ldots, t_{a}\right), t_{1}=t_{2}$
- Boolean operations $-\phi \wedge \psi, \phi \vee \psi, \neg \phi$
- first-order quantifiers - $\exists x \phi, \forall x \phi$


## Queries

A formula $\phi$ with free variables among $x_{1}, \ldots, x_{n}$ defines a map $Q$ from structures to relations:

$$
Q(\mathbb{A})=\{\mathbf{a} \mid \mathbb{A} \models \phi[\mathbf{a}]\} .
$$

Any such map $Q$ which associates to every structure $\mathbb{A}$ a ( $n$-ary) relation on $A$, and is isomorphism invariant, is called a (n-ary) query.
$Q$ is isomorphism invariant if, whenever $f: A \rightarrow B$ is an isomorphism between $\mathbb{A}$ and $\mathbb{B}$, it is also an isomorphism between $(A, Q(\mathbb{A}))$ and $(B, Q(\mathbb{B}))$.

If $n=0$, we can regard the query as a map from structures to $\{0,1\}$-a Boolean query.

## Complexity

For a first-order sentence $\phi$, we ask what is the computational complexity of the problem:

Input: a structure $\mathbb{A}$
Decide: if $\mathbb{A} \models \phi$

In other words, how complex can the collection of finite models of $\phi$ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

## Representing Structures as Strings

We use an alphabet $\Sigma=\{0,1, \#,-\}$.
For a structure $\mathbb{A}=\left(A, R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{l}\right)$, fix a linear order $<$ on $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
$R_{i}$ (of arity $k$ ) is encoded by a string $\left[R_{i}\right]_{<}$of 0 s and 1 s of length $n^{k}$.
$f_{i}$ is encoded by a string $\left[f_{i}\right]_{<}$of $0 \mathrm{~s}, 1 \mathrm{~s}$ and -s of length $n^{k} \log n$.

$$
[\mathbb{A}]_{<}=\underbrace{1 \cdots 1}_{n} \#\left[R_{1}\right]_{<} \# \cdots \#\left[R_{m}\right]_{<} \#\left[f_{1}\right]_{<} \# \cdots \#\left[f_{l}\right]_{<}
$$

The exact string obtained depends on the choice of order.

## Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of $\phi$ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$
(\mathbb{A}, c \mapsto a) \models \psi[c / x],
$$

where $c$ is a new constant symbol.
This runs n time $O\left(n^{m}\right)$ and $O(m \log n)$ space, where $m$ is the nesting depth of quantifiers in $\phi$.

$$
\operatorname{Mod}(\phi)=\{\mathbb{A} \mid \mathbb{A} \models \phi\}
$$

is in logarithmic space and polynomial time.

