1

3

Topics in Logic and Complexity Handout 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Circuit Value Problem

A *Circuit* is a *directed acyclic graph* G = (V, E) where each node has *in-degree* 0, 1 or 2 and there is exactly one vertex t with no outgoing edges, along with a labelling which assigns:

- to each node of indegree 0 a value of 0 or 1
- to each node of indegree 1 a label \neg
- to each node of indegree 2 a label \land or \lor

The problem CVP is, given a circuit, decide if the target node t evaluates to 1.

P-complete Problems

Game

Input: A directed graph G = (V, E) with a partition $V = V_1 \cup V_2$ of the vertices and two distinguished vertices $s, t \in V$.

Decide: whether Player 1 can force a token from s to t in the game where when the token is on $v \in V_1$, Player 1 moves it along an edge leaving v and when it is on $v \in V_2$, Player 2 moves it along an edge leaving v.

NP-complete Problems

SAT

Input: A Boolean formula ϕ

Decide: if there is an assignment of truth values to the variables of ϕ that makes ϕ true.

Hamiltonicity

Input: A graph G = (V, E)Decide: if there is a cycle in G that visits every vertex exactly once.

5

co-NP-complete Problems

$V\!AL$

Input: A Boolean formula ϕ Decide: if every assignment of truth values to the variables of ϕ makes ϕ true.

Non-3-colourability

Input: A graph G = (V, E)

Decide: if there is no function $\chi : V \to \{1, 2, 3\}$ such that the two endpoints of every edge are differently coloured.

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, *etc.*) on a machine model of computation;
- Complexity of a language—i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures—e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, *etc.*

There is a fascinating interplay between the views.

PSPACE-complete Problems

Geography is very much like *Game* but now players are not allowed to visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V, E) with a source and target $s, t \in V$.

The two players take turns selecting vertices from V—neither player can choose a vertex that has been previously selected. Player 1 wins if, at any point, the vertices she has selected include a path from s to t. Player 2 wins if all vertices have been selected and no such path is formed.

The problem is to decide which player has a winning strategy.

7

Signature and Structure

In general a *signature* (or *vocabulary*) σ is a finite sequence of *relation*, *function* and *constant* symbols:

 $\sigma = (R_1, \ldots, R_m, f_1, \ldots, f_n, c_1, \ldots, c_p)$

where, associated with each relation and function symbol is an arity.

Structure

9

11

A structure \mathbb{A} over the signature σ is a tuple:

 $\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_m^{\mathbb{A}}, f_1^{\mathbb{A}}, \dots, f_n^{\mathbb{A}}, c_1^{\mathbb{A}}, \dots, c_n^{\mathbb{A}}),$

where,

- A is a non-empty set, the *universe* of the strucure \mathbb{A} ,
- each $R_i^{\mathbb{A}}$ is a relation over A of the appropriate arity.
- each $f_i^{\mathbb{A}}$ is a function over A of the appropriate arity.
- each $c_i^{\mathbb{A}}$ is an element of A.

First-order Logic

Formulas of *first-order logic* are formed from the signature σ and an infinite collection X of variables as follows.

 $terms - c, x, f(t_1, \ldots, t_a)$

Formulas are defined by induction:

- atomic formulas $R(t_1, \ldots, t_a), t_1 = t_2$
- Boolean operations $\phi \land \psi, \phi \lor \psi, \neg \phi$
- first-order quantifiers $\exists x\phi, \forall x\phi$

Queries

A formula ϕ with free variables among x_1, \ldots, x_n defines a map Q from structures to relations:

Any such map Q which associates to every structure \mathbb{A} a (*n*-ary) relation on A, and is isomorphism invariant, is called a (*n*-ary) query.

Q is *isomorphism invariant* if, whenever $f : A \to B$ is an isomorphism between \mathbb{A} and \mathbb{B} , it is also an isomorphism between $(A, Q(\mathbb{A}))$ and $(B, Q(\mathbb{B}))$.

If n = 0, we can regard the query as a map from structures to $\{0, 1\}$ —a *Boolean query*.

Graphs

For example, take the signature (E), where E is a binary relation symbol.

Finite structures (V, E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

$\forall x \neg Exx \land \forall x \forall y (Exy \rightarrow Eyx)$

can be identified with the class of (*loop-free, undirected*) graphs.

12

 $Q(\mathbb{A}) = \{ \mathbf{a} \mid \mathbb{A} \models \phi[\mathbf{a}] \}.$

13

Complexity

For a first-order sentence ϕ , we ask what is the *computational complexity* of the problem:

 $\begin{array}{l} \textit{Input: a structure } \mathbb{A} \\ \textit{Decide: if } \mathbb{A} \models \phi \end{array}$

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

Representing Structures as Strings

We use an alphabet $\Sigma = \{0, 1, \#, -\}.$

For a structure $\mathbb{A} = (A, R_1, \dots, R_m, f_1, \dots, f_l)$, fix a linear order < on $A = \{a_1, \dots, a_n\}$.

 R_i (of arity k) is encoded by a string $[R_i]_{<}$ of 0s and 1s of length n^k .

 f_i is encoded by a string $[f_i]_{<}$ of 0s, 1s and -s of length $n^k \log n$.

$$[\mathbb{A}]_{<} = \underbrace{1 \cdots 1}_{n} \# [R_1]_{<} \# \cdots \# [R_m]_{<} \# [f_1]_{<} \# \cdots \# [f_l]_{<}$$

The exact string obtained depends on the choice of order.

15

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$(\mathbb{A}, c \mapsto a) \models \psi[c/x],$

where c is a new constant symbol.

This runs n time $O(ln^m)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in ϕ .

 $Mod(\phi) = \{ \mathbb{A} \mid \mathbb{A} \models \phi \}$ is in *logarithmic space* and *polynomial time*.

16

Reading List for this Handout

- 1. Papadimitriou. Chapters 8
- 2. Libkin Chapter 2.
- 3. Grädel et al. Sections 2.1–2.4 (Kolaitis).