
1

Topics in Logic and Complexity

Handout 12

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

2

Types

Recall:

For a tuple a in A, Typek(A, a) denotes the collection of all

formulas φ ∈ Lk such that A |= φ[a].

That is, (A, a) ≡k (B,b) if, and only if,

Typek(A, a) = Typek(B,b)

For every finite structure A, for every l ≤ k and l-tuple a of

elements from A, there is a formula, φ ∈ Typek(A, a) such that for

any structure B and l-tuple b of elements of B, B |= φ[b] if, and

only if, (A, a) ≡k (B,b).

3

Atomic Types

An atomic type is the conjunction of a maximally consistent set of

atomic and negated atomic formulas, in the variables x1, . . . , xk.

Note that, in a finite vocabulary, an atomic type is a quantifier-free

first-order formula.

For each structure A and a ∈ Ak there is a unique atomic type

τ(x1, . . . , xk) such that

A |= τ [a].

4

Defining Types

a ∈ Al

φ0
a
(x1 . . . xl) is the conjunction of all atomic and negated atomic

formulas θ(x1 . . . xl) such that A |= θ[a]. That is, it is the atomic

type of a in A.

φp+1
a

= φp
a
∧

∧

a∈A

∃xl+1φ
p
aa ∧ ∀xl+1

∨

a∈A

φp
aa (if l < k)

φp+1
a

= φp
a
∧

∧

i=1...k

φp+1
ai

(if l = k)

where ai is obtained from a by removing ai.

5

Defining Types

A |= φp
a
[a′] if, and only if, (A, a) ≡k

p (A, a′).

That is, (A, a′) satisfies the same formulas of Lk of quantifier rank

at most p as (A, a).

There is some q(≤ nk) such that ≡k
q+1 is the same as ≡k

q in A.

Take

φq
a
∧ ∀x

(

∨

a′∈Ak

φq
a′ ∧

∧

a′∈Ak

(φq
a′ ↔ φq+1

a′)
)

This formula defines Typek(A, a) among all structures.

6

Defining Equivalence

There is a formula η(x,y) of IFP which defines ≡k in the sense

that, for any structure A and tuples a, a′ ∈ Ak,

A |= η[a, a′] if, and only if, (A, a) ≡k (A, a′)

We construct η by first defining inductively the set of positions that

are winning for Spoiler in the k-pebble game.

7

Defining Equivalence

Let α1(x1 . . . xk), . . . , αm(x1 . . . xk) be an enumeration, up to

equivalence, of all atomic types with k variables on the finite

signature σ.

φ0(xy) ≡
∨

1≤i 6=j≤m

(αi(x) ∧ αj(y))

φ(R,xy) ≡ φ0(xy) ∨
∨

1≤i≤k

∃xi∀yiR(xy)

∨
∨

1≤i≤k

∃yi∀xiR(xy)

η ≡ ¬[ifpR,x,yφ](x,y)

8

Ordering the Types

There is an IFP formula, ψ, that defines, in any structure A, an

order on the equivalence classes of ≡k, in the sense that,

• on any structure, A, ψ defines a linear pre-order on k-tuples;

and

• if a and a′ have the same type, then neither A |= ψ[a,b] nor

A |= ψ[b, a].

The order is defined inductively.

To start, choose an arbitrary order on the atomic types

α1(x1 . . . xk), . . . , αm(x1 . . . xk).

9

Ordering the Types

· · ·· · · <

<<

a a′

Suppose a and a′ are equivalent at stage q but in distinct classes at

stage q + 1. Then, for some i, the collection of ≡k
q classes that one

can get from a by replacing the ith element is different from the

ones you can get from a′.

If the smallest (in the ordering so far) class in the symmetric

difference is obtainable from a, we put a before a′ otherwise we put

a′ before a.

10

Interpreting an Ordered Structure

Assume that A is a structure in a vocabulary σ in which every

relation symbol has arity at most k.

We associate with A a structure Ik(A) we call the k-invariant of A,

in a vocabulary ρ which contains:

• a binary relation <k;

• a unary relation =′;

• for each R in σ a unary relation R′;

• for each i with 1 ≤ i ≤ k a binary relation Xi; and

• for each permutation π of the set {1, . . . , k} a binary relation

Pπ.

11

Interpreting an Ordered Structure

Ik(A) = (Ak/ ≡k, <k,=
′, R′

j , Xi, Pπ)

• Universe Ak/ ≡k

• <k—ordering as defined

• =′ ([a]) iff a = (a1, a2, . . . , ak) and a1 = a2

• R′([a]) iff a|arity(R) ∈ R

• Xi([a], [b]) iff a and b differ at most on their ith element

• Pπ([a], [b]) iff π(a) = b.

12

IFP vs. PFP

Any first order formula φ on Ik(A) translates to an IFP formula φ∗

on A.

That is, A |= φ∗[a] if, and only if Ik(A) |= φ[[a]≡k].

φ∗ is obtained by replacing each relation symbol in φ by the IFP

formula defining it. This includes replacing equality by the

definition of ≡k.

13

IFP vs. PFP

By the same argument, we also have:

• Any IFP formula on Ik(A) translates to a corresponding IFP

formula on A.

• Any PFP formula on Ik(A) translates to a corresponding PFP

fomula on A.

14

IFP vs. PFP

Any Lk formula φ on A translates to a corresponding first order

fomula φ′ on Ik(A).

• R(x) gives R′(x). If y is a permutation of x such that π(x) = y

then R(y) gives ∃y(Pπ(x, y) ∧R′(y)).

• xi = xj gives ∃y(Pπ(x, y)∧ =′ (y)) where π is a permutation

such that π(i) = 1 and π(j) = 2.

• ∃xiψ gives ∃y(Xi(x, y) ∧ ψ′(y)).

15

IFP vs. PFP

Again, similar arguments show that for each formula of IFP or PFP,

there is a k such that the formula can be translated into an IFP or

PFP formula respectively, on Ik(A).

Theorem (Abiteboul, Vianu 1991)

IFP = PFP if, and only if, P = PSPACE.

16

Nondeterministic Fixed Points

We can define a nondeterministic fixed point logic which bears the

same relationship to NP as IFP has to P.

(Abiteboul, Vardi and Vianu)

Given two formulas φ0(R), φ1(R), define NF s for every binary

string s:

NF ǫ = ∅

NF s·0 ≡ Fφ0
(NF s) ∪ NF s

NF s·1 ≡ Fφ1
(NF s) ∪ NF s

The nondeterministic fixed point of the pair φ0, φ1 is given by:
⋃

NF s.

17

Relational Complexity

IFP = NFP if, and only if, P = NP.

IFP = PFP if, and only if, P = PSPACE.

NFP = PFP if, and only if, NP = PSPACE.

18

Relational Complexity

Indeed, one can characterise the expressive power of the fixed-point

logics by:

A Boolean query Q is expressible in IFP, NFP or PFP,

respectively if, and only if, there is a k such that Q is

invariant under ≡k and the query

Q′ = {Ik(A) | A ∈ Q}

is computable in P, NP or PSPACE respectively.

19

Reading List for this Handout

1. Libkin. Chapter 11

2. Ebbinghaus, Flum Section 8.4

