Topics in Logic and Complexity
 Handout 12

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Atomic Types

An atomic type is the conjunction of a maximally consistent set of atomic and negated atomic formulas, in the variables x_{1}, \ldots, x_{k}.

Note that, in a finite vocabulary, an atomic type is a quantifier-free first-order formula.

For each structure \mathbb{A} and $\mathbf{a} \in A^{k}$ there is a unique atomic type $\tau\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\mathbb{A} \models \tau[\mathbf{a}] .
$$

Types

Recall:

For a tuple a in $\mathbb{A}, \operatorname{Type}^{k}(\mathbb{A}, \mathbf{a})$ denotes the collection of all formulas $\phi \in L^{k}$ such that $\mathbb{A} \models \phi[\mathbf{a}]$.

That is, $(\mathbb{A}, \mathbf{a}) \equiv^{k}(\mathbb{B}, \mathbf{b})$ if, and only if,

$$
\operatorname{Type}^{k}(\mathbb{A}, \mathbf{a})=\operatorname{Type}^{k}(\mathbb{B}, \mathbf{b})
$$

For every finite structure \mathbb{A}, for every $l \leq k$ and l-tuple a of elements from \mathbb{A}, there is a formula, $\phi \in \operatorname{Type}^{k}(\mathbb{A}, \mathbf{a})$ such that for any structure \mathbb{B} and l-tuple \mathbf{b} of elements of $\mathbb{B}, \mathbb{B} \models \phi[\mathbf{b}]$ if, and only if, $(\mathbb{A}, \mathbf{a}) \equiv^{k}(\mathbb{B}, \mathbf{b})$.

Defining Types

$\mathbf{a} \in A^{l}$
$\phi_{\mathbf{a}}^{0}\left(x_{1} \ldots x_{l}\right)$ is the conjunction of all atomic and negated atomic formulas $\theta\left(x_{1} \ldots x_{l}\right)$ such that $\mathbb{A} \models \theta[\mathbf{a}]$. That is, it is the atomic type of \mathbf{a} in \mathbb{A}.

$$
\begin{array}{rlrl}
\phi_{\mathbf{a}}^{p+1} & =\phi_{\mathbf{a}}^{p} \wedge \bigwedge_{a \in A} \exists x_{l+1} \phi_{\mathbf{a} a}^{p} \wedge \forall x_{l+1} & \bigvee_{a \in A} \phi_{\mathbf{a} a}^{p} & \\
& (\text { if } l<k) \\
\phi_{\mathbf{a}}^{p+1} & =\phi_{\mathbf{a}}^{p} \wedge \bigwedge_{i=1 \ldots k} \phi_{\mathbf{a}_{i}}^{p+1} & & (\text { if } l=k)
\end{array}
$$

where \mathbf{a}_{i} is obtained from a by removing a_{i}.

Defining Types

$\mathbb{A} \models \phi_{\mathbf{a}}^{p}\left[\mathbf{a}^{\prime}\right]$ if, and only if, $(\mathbb{A}, \mathbf{a}) \equiv_{p}^{k}\left(\mathbb{A}, \mathbf{a}^{\prime}\right)$.
That is, $\left(\mathbb{A}, \mathbf{a}^{\prime}\right)$ satisfies the same formulas of L^{k} of quantifier rank at most p as (\mathbb{A}, \mathbf{a}).

There is some $q\left(\leq n^{k}\right)$ such that \equiv_{q+1}^{k} is the same as \equiv_{q}^{k} in \mathbb{A}.
Take

$$
\phi_{\mathbf{a}}^{q} \wedge \forall \mathbf{x}\left(\bigvee_{\mathbf{a}^{\prime} \in A^{k}} \phi_{\mathbf{a}^{\prime}}^{q} \wedge \bigwedge_{\mathbf{a}^{\prime} \in A^{k}}\left(\phi_{\mathbf{a}^{\prime}}^{q} \leftrightarrow \phi_{\mathbf{a}^{\prime}}^{q+1}\right)\right)
$$

This formula defines $\operatorname{Type}^{k}(\mathbb{A}, \mathbf{a})$ among all structures.

Defining Equivalence

There is a formula $\eta(\mathbf{x}, \mathbf{y})$ of IFP which defines \equiv^{k} in the sense that, for any structure \mathbb{A} and tuples $\mathbf{a}, \mathbf{a}^{\prime} \in A^{k}$,

$$
\mathbb{A} \models \eta\left[\mathbf{a}, \mathbf{a}^{\prime}\right] \quad \text { if, and only if, }(\mathbb{A}, \mathbf{a}) \equiv \equiv^{k}\left(\mathbb{A}, \mathbf{a}^{\prime}\right)
$$

We construct η by first defining inductively the set of positions that are winning for Spoiler in the k-pebble game.

Defining Equivalence

Let $\alpha_{1}\left(x_{1} \ldots x_{k}\right), \ldots, \alpha_{m}\left(x_{1} \ldots x_{k}\right)$ be an enumeration, up to equivalence, of all atomic types with k variables on the finite signature σ.

$$
\begin{array}{r}
\phi_{0}(\mathbf{x y}) \equiv \bigvee_{1 \leq i \neq j \leq m}\left(\alpha_{i}(\mathbf{x}) \wedge \alpha_{j}(\mathbf{y})\right) \\
\phi(R, \mathbf{x y}) \equiv \phi_{0}(\mathbf{x y}) \quad \vee \bigvee_{1 \leq i \leq k} \exists x_{i} \forall y_{i} R(\mathbf{x y}) \\
\vee \bigvee_{1 \leq i \leq k} \exists y_{i} \forall x_{i} R(\mathbf{x y})
\end{array}
$$

Ordering the Types

There is an IFP formula, ψ, that defines, in any structure \mathbb{A}, an order on the equivalence classes of \equiv^{k}, in the sense that,

- on any structure, \mathbb{A}, ψ defines a linear pre-order on k-tuples; and
- if \mathbf{a} and \mathbf{a}^{\prime} have the same type, then neither $\mathbb{A} \models \psi[\mathbf{a}, \mathbf{b}]$ nor $\mathbb{A} \models \psi[\mathbf{b}, \mathbf{a}]$.

The order is defined inductively.
To start, choose an arbitrary order on the atomic types
$\alpha_{1}\left(x_{1} \ldots x_{k}\right), \ldots, \alpha_{m}\left(x_{1} \ldots x_{k}\right)$.

$$
\eta \equiv \neg\left[\mathbf{i f p}_{R, \mathbf{x}, \mathbf{y}} \phi\right](\mathbf{x}, \mathbf{y})
$$

Ordering the Types

Suppose a and \mathbf{a}^{\prime} are equivalent at stage q but in distinct classes at stage $q+1$. Then, for some i, the collection of \equiv_{q}^{k} classes that one can get from a by replacing the i th element is different from the ones you can get from \mathbf{a}^{\prime}.
If the smallest (in the ordering so far) class in the symmetric difference is obtainable from \mathbf{a}, we put \mathbf{a} before \mathbf{a}^{\prime} otherwise we put a^{\prime} before a .

Interpreting an Ordered Structure

Assume that \mathbb{A} is a structure in a vocabulary σ in which every relation symbol has arity at most k.

We associate with \mathbb{A} a structure $I_{k}(\mathbb{A})$ we call the k-invariant of \mathbb{A}, in a vocabulary ρ which contains:

- a binary relation $<_{k}$;
- a unary relation $={ }^{\prime}$;
- for each R in σ a unary relation R^{\prime};
- for each i with $1 \leq i \leq k$ a binary relation X_{i}; and
- for each permutation π of the set $\{1, \ldots, k\}$ a binary relation P_{π}.

Interpreting an Ordered Structure

$$
I_{k}(\mathbb{A})=\left(A^{k} / \equiv^{k},<_{k},=^{\prime}, R_{j}^{\prime}, X_{i}, P_{\pi}\right)
$$

- Universe A^{k} / \equiv^{k}
- $<_{k}$-ordering as defined
- $=^{\prime}([\mathbf{a}])$ iff $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $a_{1}=a_{2}$
- $R^{\prime}([\mathbf{a}])$ iff $\left.\mathbf{a}\right|_{\operatorname{arity}(R)} \in R$
- $X_{i}([\mathbf{a}],[\mathbf{b}])$ iff a and \mathbf{b} differ at most on their i th element
- $P_{\pi}([\mathbf{a}],[\mathbf{b}])$ iff $\pi(\mathbf{a})=\mathbf{b}$.

IFP vs. PFP

By the same argument, we also have:

- Any IFP formula on $I_{k}(\mathbb{A})$ translates to a corresponding IFP formula on \mathbb{A}.
- Any PFP formula on $I_{k}(\mathbb{A})$ translates to a corresponding PFP fomula on \mathbb{A}.

IFP vs. PFP

Any L^{k} formula ϕ on \mathbb{A} translates to a corresponding first order fomula ϕ^{\prime} on $I_{k}(\mathbb{A})$.

- $R(\mathbf{x})$ gives $R^{\prime}(x)$. If \mathbf{y} is a permutation of \mathbf{x} such that $\pi(\mathbf{x})=\mathbf{y}$ then $R(\mathbf{y})$ gives $\exists y\left(P_{\pi}(x, y) \wedge R^{\prime}(y)\right)$.
- $x_{i}=x_{j}$ gives $\exists y\left(P_{\pi}(x, y) \wedge=^{\prime}(y)\right)$ where π is a permutation such that $\pi(i)=1$ and $\pi(j)=2$.
- $\exists x_{i} \psi$ gives $\exists y\left(X_{i}(x, y) \wedge \psi^{\prime}(y)\right)$.

IFP vs. PFP

Again, similar arguments show that for each formula of IFP or PFP, there is a k such that the formula can be translated into an IFP or PFP formula respectively, on $I_{k}(\mathbb{A})$.

Theorem

(Abiteboul, Vianu 1991)
$\mathrm{IFP}=\mathrm{PFP}$ if, and only if, $\mathrm{P}=\mathrm{PSPACE}$

Nondeterministic Fixed Points

We can define a nondeterministic fixed point logic which bears the same relationship to NP as IFP has to P.
(Abiteboul, Vardi and Vianu)

Given two formulas $\phi_{0}(R), \phi_{1}(R)$, define $N F^{s}$ for every binary string s :
$N F^{\epsilon}=\emptyset$
$N F^{s \cdot 0} \equiv F_{\phi_{0}}\left(N F^{s}\right) \cup N F^{s}$
$N F^{s \cdot 1} \equiv F_{\phi_{1}}\left(N F^{s}\right) \cup N F^{s}$
The nondeterministic fixed point of the pair ϕ_{0}, ϕ_{1} is given by: $\bigcup N F^{s}$ 。

Relational Complexity

$\mathrm{IFP}=\mathrm{NFP}$ if, and only if, $\mathrm{P}=\mathrm{NP}$.
$\mathrm{IFP}=\mathrm{PFP}$ if, and only if, $\mathrm{P}=\mathrm{PSPACE}$.
$\mathrm{NFP}=\mathrm{PFP}$ if, and only if, NP $=$ PSPACE.

Relational Complexity

Indeed, one can characterise the expressive power of the fixed-point logics by:

A Boolean query Q is expressible in IFP, NFP or PFP, respectively if, and only if, there is a k such that Q is invariant under \equiv^{k} and the query

$$
Q^{\prime}=\left\{I_{k}(\mathbb{A}) \mid \mathbb{A} \in Q\right\}
$$

is computable in P , NP or PSPACE respectively.

