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Types

Recall:
For a tuple a in A, Type® (A, a) denotes the collection of all
formulas ¢ € L* such that A |= ¢|a].

That is, (A,a) =F (B, b) if, and only if,

Type*(A,a) = Type" (B, b)

For every finite structure A, for every [ < k and [-tuple a of
elements from A, there is a formula, ¢ € Typek(A, a) such that for
any structure B and I-tuple b of elements of B, B |= ¢[b] if, and
only if, (A,a) =* (B, b).

Atomic Types

An atomic type is the conjunction of a maximally consistent set of
atomic and negated atomic formulas, in the variables z1, ..., k.

Note that, in a finite vocabulary, an atomic type is a quantifier-free
first-order formula.

For each structure A and a € A* there is a unique atomic type
7(21,...,x) such that

A E 7]al.

Defining Types

ac A

@2(x1 ... ;) is the conjunction of all atomic and negated atomic
formulas 6(xy ...x;) such that A = 6[a]. That is, it is the atomic
type of a in A.

rtt = @h A N Bwagl, AVa \/ B, (f1<k)
acA acA

gt = ghn N\ R (if 1 = k)
i=1...k

where a; is obtained from a by removing a;.




Defining Types

A | ¢rla’] if, and only if, (A, a) Ezkj (A a’).
That is, (A, a’) satisfies the same formulas of L* of quantifier rank
at most p as (A, a).

There is some ¢(< n*) such that E’;H is the same as E]; in A.

Take
oL nYx(\ oL A N (6L < o)

a'c Ak a’c Ak

This formula defines Type” (A, a) among all structures.

Defining Equivalence

There is a formula 7(x, y) of IFP which defines =* in the sense
that, for any structure A and tuples a,a’ € A,

A= nla,a’]l  if, and only if, (A,a) =" (A, a’)

We construct n by first defining inductively the set of positions that
are winning for Spoiler in the k-pebble game.

Defining Equivalence

Let ay(x1...2%),. .., m(x1 ... 2%) be an enumeration, up to
equivalence, of all atomic types with & variables on the finite
signature o.

goxy) =\ (ai(x) Aaj(y))

1<izj<m

d(R,xy) = do(xy) V \/ Jx;Vy; R(xy)
1<i<k

v \/ Jy; Vo, R(xy)
1<i<k

n = [ifPpxy?l (X, Y)

Ordering the Types

There is an IFP formula, v, that defines, in any structure A, an
order on the equivalence classes of =*, in the sense that,

e on any structure, A, v defines a linear pre-order on k-tuples;
and

e if a and a’ have the same type, then neither A = «[a, b] nor
A wlb,al.
The order is defined inductively.

To start, choose an arbitrary order on the atomic types

ar(zy . xp)y oy am (T x).
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Ordering the Types Interpreting an Ordered Structure
Assume that A is a structure in a vocabulary ¢ in which every
relation symbol has arity at most k.
We associate with A a structure Ij(A) we call the k-invariant of A,
in a vocabulary p which contains:
e a binary relation <y;
Suppose a and a’ are equivalent at stage ¢ but in distinct classes at e a unary relation =;
; : _k . .
stage ¢ + 1. Then, for some i, the collection of =] classes that one e for each R in o a unary relation R';
can get from a by replacing the ith element is different from the .
, e for each ¢ with 1 <i < k a binary relation X;; and
ones you can get from a’.
If the smallest (in the ordering so far) class in the symmetric o for each permutation 7 of the set {1,...,k} a binary relation
difference is obtainable from a, we put a before a’ otherwise we put Pr.
a’ before a.
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Interpreting an Ordered Structure IFP vs. PFP

Iu(A) = (A =, <y, =/ R}, X, Pr)

Universe AF/ =F

e <;—ordering as defined

e =’ ([a]) iff a = (a1,aq,...,a;) and a1 = a9

e R([a]) iff al4pity(r) € R

e X;([a],[b]) iff a and b differ at most on their ith element
e P.([a],[b]) if m(a) =b.

Any first order formula ¢ on Ij(A) translates to an IFP formula ¢*
on A.

That is, A = ¢*[a] if, and only if Iu(A) = ¢[[a]—+].

¢* is obtained by replacing each relation symbol in ¢ by the IFP
formula defining it. This includes replacing equality by the
definition of =*.
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IFP vs. PFP IFP vs. PFP
By the same argument, we also have: Any L* formula ¢ on A translates to a corresponding first order
/
e Any IFP formula on I;(A) translates to a corresponding IFP fomula ¢ on Ii.(4).
formula on A. e R(x) gives R'(x). If y is a permutation of x such that 7(x) =y
e Any PFP formula on I (A) translates to a corresponding PFP then R(y) gives Jy(Pr(z,y) A R (y)).
fomula on A. o 1, = x; gives Jy(Pr(x,y)A =" (y)) where 7 is a permutation
such that 7(i) = 1 and 7 (j) = 2.
o Ju;y gives Jy(Xi(x, y) A Y/ (y))-
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IFP vs. PFP

Again, similar arguments show that for each formula of IFP or PFP,
there is a k such that the formula can be translated into an IFP or
PFP formula respectively, on Ij(A).

Theorem
IFP = PFP if, and only if, P = PSPACE.

(Abiteboul, Vianu 1991)

Nondeterministic Fixed Points

We can define a nondeterministic fixed point logic which bears the
same relationship to NP as IFP has to P.
(Abiteboul, Vardi and Vianu)

Given two formulas ¢g(R), ¢1(R), define NF'® for every binary
string s:

NF€ =)
NF*Y = F, (NF*) U NF*
NF*! = Fy, (NF*®) U NF*

The nondeterministic fixed point of the pair ¢g, ¢1 is given by:
U NF®.




Relational Complexity

IFP = NFP if, and only if, P = NP.
IFP = PFP if, and only if, P = PSPACE.
NFP = PFP if, and only if. NP = PSPACE.

17

18

Relational Complexity

Indeed, one can characterise the expressive power of the fixed-point
logics by:

A Boolean query @ is expressible in IFP, NFP or PFP,
respectively if, and only if, there is a k such that @ is

invariant under =* and the query

Q ={L(A)|AcQ}

is computable in P, NP or PSPACE respectively.

Reading List for this Handout

1. Libkin. Chapter 11
2. Ebbinghaus, Flum Section 8.4
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