3

Topics in Logic and Complexity Handout 12

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Atomic Types

An *atomic type* is the conjunction of a *maximally consistent* set of atomic and negated atomic formulas, in the variables x_1, \ldots, x_k .

Note that, in a *finite* vocabulary, an atomic type is a quantifier-free first-order formula.

For each structure A and $\mathbf{a} \in A^k$ there is a *unique* atomic type $\tau(x_1, \ldots, x_k)$ such that

 $\mathbb{A} \models \tau[\mathbf{a}].$

Types

Recall:

For a tuple **a** in \mathbb{A} , Type^k(\mathbb{A} , **a**) denotes the collection of all formulas $\phi \in L^k$ such that $\mathbb{A} \models \phi[\mathbf{a}]$.

That is, $(\mathbb{A}, \mathbf{a}) \equiv^k (\mathbb{B}, \mathbf{b})$ if, and only if,

 $\mathsf{Type}^k(\mathbb{A},\mathbf{a}) = \mathsf{Type}^k(\mathbb{B},\mathbf{b})$

For every finite structure \mathbb{A} , for every $l \leq k$ and *l*-tuple **a** of elements from \mathbb{A} , there is a formula, $\phi \in \mathsf{Type}^k(\mathbb{A}, \mathbf{a})$ such that for any structure \mathbb{B} and *l*-tuple **b** of elements of \mathbb{B} , $\mathbb{B} \models \phi[\mathbf{b}]$ if, and only if, $(\mathbb{A}, \mathbf{a}) \equiv^k (\mathbb{B}, \mathbf{b})$.

Defining Types

$\mathbf{a} \in A^l$

 $\phi^{0}_{\mathbf{a}}(x_{1} \dots x_{l})$ is the conjunction of all atomic and negated atomic formulas $\theta(x_{1} \dots x_{l})$ such that $\mathbb{A} \models \theta[\mathbf{a}]$. That is, it is the *atomic type* of \mathbf{a} in \mathbb{A} .

$$\begin{split} \phi_{\mathbf{a}}^{p+1} &= \phi_{\mathbf{a}}^{p} \wedge \bigwedge_{a \in A} \exists x_{l+1} \phi_{\mathbf{a}a}^{p} \wedge \forall x_{l+1} \bigvee_{a \in A} \phi_{\mathbf{a}a}^{p} \quad \text{(if } l < k) \\ \phi_{\mathbf{a}}^{p+1} &= \phi_{\mathbf{a}}^{p} \wedge \bigwedge_{i=1\dots k} \phi_{\mathbf{a}_{i}}^{p+1} \quad \text{(if } l = k) \end{split}$$

where \mathbf{a}_i is obtained from **a** by removing a_i .

2

4

7

Defining Types

 $\mathbb{A} \models \phi^p_{\mathbf{a}}[\mathbf{a}']$ if, and only if, $(\mathbb{A}, \mathbf{a}) \equiv^k_p (\mathbb{A}, \mathbf{a}')$.

That is, $(\mathbb{A}, \mathbf{a}')$ satisfies the same formulas of L^k of *quantifier rank* at most p as (\mathbb{A}, \mathbf{a}) .

There is some $q(\leq n^k)$ such that \equiv_{q+1}^k is the same as \equiv_q^k in A.

Take

$$\phi_{\mathbf{a}}^q \land \forall \mathbf{x} \Big(\bigvee_{\mathbf{a}' \in A^k} \phi_{\mathbf{a}'}^q \land \bigwedge_{\mathbf{a}' \in A^k} (\phi_{\mathbf{a}'}^q \leftrightarrow \phi_{\mathbf{a}'}^{q+1}) \Big)$$

This formula defines $\mathsf{Type}^{k}(\mathbb{A}, \mathbf{a})$ among all structures.

Defining Equivalence

There is a formula $\eta(\mathbf{x}, \mathbf{y})$ of IFP which defines \equiv^k in the sense that, for *any* structure \mathbb{A} and tuples $\mathbf{a}, \mathbf{a}' \in A^k$,

 $\mathbb{A} \models \eta[\mathbf{a}, \mathbf{a}'] \quad \text{if, and only if, } (\mathbb{A}, \mathbf{a}) \equiv^k (\mathbb{A}, \mathbf{a}')$

We construct η by first defining *inductively* the set of positions that are winning for *Spoiler* in the *k*-pebble game.

Defining Equivalence

Let $\alpha_1(x_1 \ldots x_k), \ldots, \alpha_m(x_1 \ldots x_k)$ be an enumeration, up to equivalence, of all atomic types with k variables on the finite signature σ .

 $\phi_0(\mathbf{xy}) \equiv \bigvee_{1 \le i \ne j \le m} (\alpha_i(\mathbf{x}) \land \alpha_j(\mathbf{y}))$ $\phi(R, \mathbf{xy}) \equiv \phi_0(\mathbf{xy}) \quad \lor \bigvee_{\substack{1 \le i \le k \\ \lor \bigvee \\ 1 \le i \le k \\ i \le$

$$\eta \equiv \neg [\mathbf{ifp}_{R,\mathbf{x},\mathbf{y}}\phi](\mathbf{x},\mathbf{y})$$

Ordering the Types

There is an IFP formula, ψ , that defines, in any structure \mathbb{A} , an *order* on the equivalence classes of \equiv^k , in the sense that,

- on any structure, $\mathbbm{A},$ ψ defines a linear pre-order on k-tuples; and
- if **a** and **a'** have the same type, then neither $\mathbb{A} \models \psi[\mathbf{a}, \mathbf{b}]$ nor $\mathbb{A} \models \psi[\mathbf{b}, \mathbf{a}].$

The order is defined *inductively*.

To start, choose an arbitrary order on the atomic types $\alpha_1(x_1 \dots x_k), \dots, \alpha_m(x_1 \dots x_k).$

8

9

Ordering the Types

Suppose **a** and **a'** are equivalent at stage q but in distinct classes at stage q + 1. Then, for some i, the collection of \equiv_q^k classes that one can get from **a** by replacing the *i*th element is different from the ones you can get from **a'**.

If the *smallest* (in the ordering so far) class in the symmetric difference is obtainable from \mathbf{a} , we put \mathbf{a} before \mathbf{a}' otherwise we put \mathbf{a}' before \mathbf{a} .

Interpreting an Ordered Structure

Assume that \mathbb{A} is a structure in a vocabulary σ in which every relation symbol has arity *at most k*.

We associate with \mathbb{A} a structure $I_k(\mathbb{A})$ we call the *k*-invariant of \mathbb{A} , in a vocabulary ρ which contains:

- a *binary* relation $<_k$;
- a *unary* relation =';
- for each R in σ a *unary* relation R';
- for each *i* with $1 \le i \le k$ a *binary* relation X_i ; and
- for each permutation π of the set $\{1, \ldots, k\}$ a *binary* relation P_{π} .

11

Interpreting an Ordered Structure

 $I_k(\mathbb{A}) = (A^k / \equiv^k, <_k, =', R'_i, X_i, P_\pi)$

- Universe $A^k \equiv^k$
- $<_k$ —ordering as defined
- =' ([**a**]) iff **a** = $(a_1, a_2, ..., a_k)$ and $a_1 = a_2$
- $R'([\mathbf{a}])$ iff $\mathbf{a}|_{arity(R)} \in R$
- $X_i([\mathbf{a}], [\mathbf{b}])$ iff **a** and **b** differ *at most* on their *i*th element
- $P_{\pi}([\mathbf{a}], [\mathbf{b}])$ iff $\pi(\mathbf{a}) = \mathbf{b}$.

IFP vs. PFP

Any first order formula ϕ on $I_k(\mathbb{A})$ translates to an IFP formula ϕ^* on \mathbb{A} .

That is, $\mathbb{A} \models \phi^*[\mathbf{a}]$ *if, and only if* $I_k(\mathbb{A}) \models \phi[[\mathbf{a}]_{\equiv^k}]$.

 ϕ^* is obtained by replacing each relation symbol in ϕ by the IFP formula *defining* it. This includes replacing *equality* by the definition of \equiv^k .

15

IFP vs. PFP

Any L^k formula ϕ on \mathbb{A} translates to a corresponding first order fomula ϕ' on $I_k(\mathbb{A})$.

- $R(\mathbf{x})$ gives R'(x). If \mathbf{y} is a permutation of \mathbf{x} such that $\pi(\mathbf{x}) = \mathbf{y}$ then $R(\mathbf{y})$ gives $\exists y(P_{\pi}(x, y) \land R'(y))$.
- $x_i = x_j$ gives $\exists y(P_{\pi}(x, y) \land ='(y))$ where π is a permutation such that $\pi(i) = 1$ and $\pi(j) = 2$.
- $\exists x_i \psi$ gives $\exists y(X_i(x,y) \land \psi'(y)).$

IFP vs. PFP

IFP vs. PFP

• Any IFP formula on $I_k(\mathbb{A})$ translates to a corresponding IFP

• Any PFP formula on $I_k(\mathbb{A})$ translates to a corresponding PFP

By the same argument, we also have:

formula on A.

fomula on A.

Again, similar arguments show that for each formula of IFP or PFP, there is a k such that the formula can be translated into an IFP or PFP formula respectively, on $I_k(\mathbb{A})$.

Theorem

(Abiteboul, Vianu 1991)

IFP = PFP if, and only if, P = PSPACE.

Nondeterministic Fixed Points

We can define a *nondeterministic fixed point logic* which bears the same relationship to NP as IFP has to P.

(Abiteboul, Vardi and Vianu)

Given two formulas $\phi_0(R), \phi_1(R)$, define NF^s for every binary string s:

 $NF^{\epsilon} = \emptyset$

 $NF^{s \cdot 0} \equiv F_{\phi_0}(NF^s) \cup NF^s$

 $NF^{s\cdot 1} \equiv F_{\phi_1}(NF^s) \cup NF^s$

The nondeterministic fixed point of the pair ϕ_0, ϕ_1 is given by: $\bigcup NF^s$.

16

17 18 **Relational Complexity Relational Complexity** IFP = NFP *if*, and only *if*, P = NP. Indeed, one can *characterise* the expressive power of the fixed-point logics by: IFP = PFP *if*, and only *if*, P = PSPACE. A Boolean query Q is expressible in IFP, NFP or PFP, NFP = PFP *if*, *and only if*, NP = PSPACE. respectively if, and only if, there is a k such that Q is invariant under \equiv^k and the query $Q' = \{I_k(\mathbb{A}) \mid \mathbb{A} \in Q\}$ is computable in P, NP or PSPACE respectively. 19 **Reading List for this Handout** 1. Libkin. Chapter 11 2. Ebbinghaus, Flum Section 8.4