Category Theory for Computer Science
 Mid-Term Problems

November 2009

Problem 1.

(a) Consider the commutative diagram

where m is a mono. Prove that if $(*)$ is a pullback then so is the outer square.
(b) Consider the commutative diagram

where m is a mono.

Problem 2.

- A mono $m: X \rightarrow Y$ is regular if there exists a diagram $Y \underset{g}{\stackrel{f}{\longrightarrow}} Z$ for which m is an equalizer.
- A mono $m: X \rightarrow Y$ is strong, if for every commutative diagram as on the left below where $e: U \rightarrow V$ is epi

there exists exactly one arrow $d: V \rightarrow X$ as on the right above such that both triangles commute.
- A mono $m: X \rightarrow Y$ is extremal if for every commutative diagram

where $e: X \rightarrow V$ is epi, e is an isomorphism.
Prove that the following implications between properties of monomorphisms hold in any category:

$$
\text { section } \Longrightarrow \text { regular } \Longrightarrow \text { strong } \Longrightarrow \text { extremal }
$$

(None of these is in general an equivalence, but that is another story.)
Problem 3. Given an object A in a small category \mathbf{C}, consider the following diagram in the category Cat of small categories and functors:

where:

- \mathbf{C}^{\rightarrow} is the arrow category of \mathbf{C} and Cod is the codomain functor, defined by:
$-\operatorname{Cod}(f)=\operatorname{cod}(f)$ on objects in \mathbf{C}^{\rightarrow},
$-\operatorname{Cod}(h, k)=k$ on arrows in \mathbf{C}.
- $\mathbf{1}$ is the category with one object $*$ and one arrow 1_{*}, and K_{A} is the constant functor defined by:

$$
\begin{aligned}
& -K_{A}(*)=A \\
& -K_{A}\left(1_{*}\right)=1_{A} .
\end{aligned}
$$

Prove that the slice category \mathbf{C} / A, together with suitable functors to $\mathbf{C} \rightarrow$ and $\mathbf{1}$, is a pullback of the above diagram.

Problem 4. Fix a set X with $* \notin X$.
For $n \in \mathbb{N}$, define

$$
X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in(X \cup\{*\})^{n} \mid x_{i}=* \Longrightarrow x_{i+1}=* \text { for all } i=1, \ldots, n-1\right\} .
$$

(a) Consider the following infinite diagram in the category Sets of sets and functions:

$$
\begin{equation*}
X_{1} \xrightarrow{e_{1}} X_{2} \xrightarrow{e_{2}} \cdots \longrightarrow X_{n} \xrightarrow{e_{n}} X_{n+1} \longrightarrow \cdots \quad(n \in \mathbb{N}) \tag{1}
\end{equation*}
$$

where $e_{n}: X_{n} \rightarrow X_{n+1}$ is the function given by

$$
e_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, *\right)
$$

Give a simple description of a colimit of (1), and prove its universal property.
(b) Consider the following infinite diagram in the category Sets of sets and functions:

$$
\begin{equation*}
X_{1} \leftarrow_{p_{1}} X_{2} \leftarrow_{p_{2}} \cdots<X_{n}<{ }_{p_{n}} X_{n+1} \leftarrow \cdots \quad(n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

where $p_{n}: X_{n+1} \rightarrow X_{n}$ is the function given by

$$
p_{n}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right) .
$$

Give a simple description of a limit of (2), and prove its universal property.

