Category Theory Exercises: Week 2

October 2009

These exercises are not compulsory, and they will not contribute to your final grade. Please send your solutions or questions by e-mail to bk291@cam.ac.uk, or leave them in Bartek Klin's pigeonhole next to Reception.

Exercise 1. Let \mathbf{D} be a subcategory of \mathbf{C}, and let $f: X \rightarrow Y$ be an arrow in D. Prove that:

- if f is a mono in \mathbf{C} then it is a mono in \mathbf{D},
- if f is a section in \mathbf{D} then it is a section in \mathbf{C}.

Exercise 2. A partial function from a set A to a set B, denoted $f: A \rightharpoonup B$, is:

- a subset $C \subseteq A$ with
- a function $f: C \rightarrow B$.

Note that C is fully determined by f and is therefore omitted in the notation $f: A \rightharpoonup B . C$ is called the domain of definition of f. Composition of partial functions is defined in the obvious way and is clearly associative; also, identity functions are clearly units for composition. Thus one gets the category of sets and partial functions Par.
Characterize binary products in Par.
Hint: First realize why the Cartesian product of sets does not satisfy the definition of categorical product in Par.

