Comma categories

- Defn. Given two functors $\mathbf{C} \xrightarrow{F} \mathbf{E} \xleftarrow{G} \mathbf{D}$, their comma category $F \downarrow G$ is defined as follows:
 - objects are triples (C, f, D) for $C \in |\mathbf{C}|, D \in |\mathbf{D}|$, and $f : FC \to GD$ an arrow in \mathbf{E}
 - arrows $(h,k): (C,f,D) \rightarrow (C',f',D')$ are pairs
 - $h: C \to C', k: D \to D'$ such that $f' \circ Fh = Gk \circ f$.
 - composition and identity defined componentwise.

Example. The category of graphs is a comma category:

$$\mathbf{Graph} = \mathrm{Id}_{\mathbf{Sets}} \downarrow \Delta \quad \text{for} \quad \Delta(X) = X \times X$$

Exercise: Show how arrow categories \mathbb{C}^{\rightarrow} and slice categories \mathbb{C}/A , are comma categories. Fact: If \mathbb{C} , \mathbb{D} are complete and G preserves limits then $F \downarrow G$ is complete. Multisorted sets

For a fixed set \boldsymbol{S} ,

- an S-sorted set is a family $A = (A_s)_{s \in S}$ of sets.
- an $S\operatorname{-}\mathsf{sorted}$ function from A to B is a family

$$(f_s:A_s\to B_s)_{s\in S}$$

of functions.

S-sorted sets and functions form a category \mathbf{Sets}^S

Note: If ${\cal S}$ has n elements then

$$\mathbf{Sets}^S \cong \mathbf{Sets}^n = \underbrace{\mathbf{Sets} \times \cdots \times \mathbf{Sets}}_{n \text{ times}}$$

Variable sets

Defn. For a fixed poset (I, \leq) , an I-indexed set A consists of:

- a family of sets $(A_i)_{i \in I}$,
- a function $\alpha_{ij}: A_i \to A_j$ for $i \leq j$

s.t.

- $\alpha_{ii} = 1_{A_i}$ for each i,
- $\alpha_{jk} \circ \alpha_{ij} = \alpha_{ik}$ for $i \leq j \leq k$.

So it is just a functor $A: I \rightarrow \mathbf{Sets}$

Example: For $I = \mathbb{R}$, indexed sets are "sets varying through time".

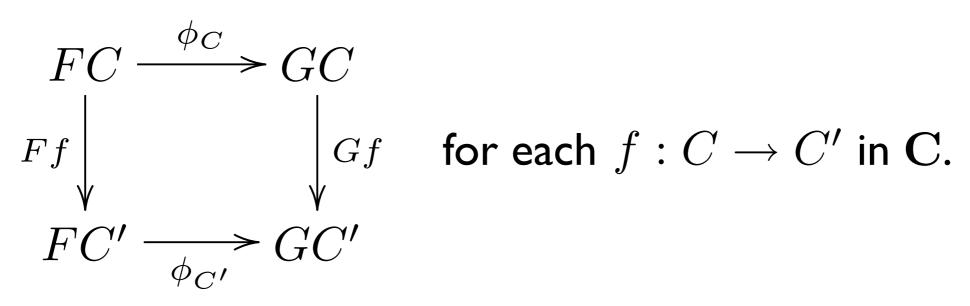
Defn. An *I*-indexed function $\phi : A \to B$ is a family of functions $(\phi_i : A_i \to B_i)_{i \in I}$ such that:

$$\begin{array}{ccc} A_i & \stackrel{\phi_i}{\longrightarrow} & B_i \\ \alpha_{ij} & & & & & & \\ & & & & & \\ A_j & \stackrel{\phi_j}{\longrightarrow} & B_j \end{array} \quad \text{for each } i \leq j.$$

Natural transformations

Defn. For two functors $F, G : \mathbb{C} \to \mathbb{D}$, a natural transformation $\phi : F \to G$ is a family $(\phi_C : FC \to GC)_{c \in |\mathbb{C}|}$

of arrows in D indexed by objects in C, such that



The collection of all nat. transfs. from F to G denoted Nat(F,G)

Defn. ϕ is a natural isomorphism if every component ϕ_C is an isomorphism.

Examples

- identity transformation: $\mathrm{id}_{\mathrm{F}}: F \to F$ for any $F: \mathbf{C} \to \mathbf{D}$
- singleton set: $\eta : \mathrm{Id}_{\mathbf{Sets}} \to \mathcal{P}$

$$\eta_X : X \to \mathcal{P}X \qquad \eta_X(x) = \{x\}$$

- Is there any transformation $\zeta:\mathcal{P}\to \mathrm{Id}_{\mathbf{Sets}}$?

$$\zeta_X:\mathcal{P}X\to X$$

No, e.g. the component at \emptyset cannot exist...

How about nonempty powerset? $\zeta:\mathcal{P}^+\to \mathrm{Id}_{\mathbf{Sets}}$?

No: take $X = \{\clubsuit, \clubsuit\}$, the naturality condition must fail for $f: X \to X = \{\clubsuit \mapsto \diamondsuit, \clubsuit \mapsto \clubsuit\}$ (NB. $(\mathcal{P}f)(X) = X$)