Comma categories

Defn. Given two functors $\mathbf{C} \stackrel{F}{\longrightarrow} \mathbf{E} \stackrel{G}{\leftarrow} \mathbf{D}$, their comma category $F \downarrow G$ is defined as follows:

- objects are triples (C, f, D) for $C \in|\mathbf{C}|, D \in|\mathbf{D}|$, and $f: F C \rightarrow G D$ an arrow in \mathbf{E}
- arrows $(h, k):(C, f, D) \rightarrow\left(C^{\prime}, f^{\prime}, D^{\prime}\right)$ are pairs $h: C \rightarrow C^{\prime}, k: D \rightarrow D^{\prime}$ such that $f^{\prime} \circ F h=G k \circ f$.
- composition and identity defined componentwise.

Example. The category of graphs is a comma category:
Graph $=\operatorname{Id}_{\text {Sets }} \downarrow \Delta$ for $\quad \Delta(X)=X \times X$
Exercise: Show how arrow categories $\mathbf{C} \rightarrow$ and slice categories \mathbf{C} / A, are comma categories.
Fact: If \mathbf{C}, \mathbf{D} are complete and G preserves limits then $F \downarrow G$ is complete.

Multisorted sets

For a fixed set S,

- an S-sorted set is a family $A=\left(A_{s}\right)_{s \in S}$ of sets.
- an S-sorted function from A to B is a family

$$
\left(f_{s}: A_{s} \rightarrow B_{s}\right)_{s \in S}
$$

of functions.
S-sorted sets and functions form a category Sets^{S}
Note: If S has n elements then

Isomorphism in Cat

Variable sets

Defn. For a fixed poset (I, \leq), an I-indexed set A consists of:

- a family of sets $\left(A_{i}\right)_{i \in I}$,
- a function $\alpha_{i j}: A_{i} \rightarrow A_{j}$ for $i \leq j$
s.t.
- $\alpha_{i i}=1_{A_{i}}$ for each i,

$$
\begin{aligned}
& \text { So it is just } \\
& \text { a functor } \\
& A: I \rightarrow \text { Sets }
\end{aligned}
$$

- $\alpha_{j k} \circ \alpha_{i j}=\alpha_{i k}$ for $i \leq j \leq k$.

Example: For $I=\mathbb{R}$, indexed sets are "sets varying through time".
Defn. An I-indexed function $\phi: A \rightarrow B$ is
a family of functions $\left(\phi_{i}: A_{i} \rightarrow B_{i}\right)_{i \in I}$ such that:

Natural transformations

Defn. For two functors $F, G: \mathbf{C} \rightarrow \mathbf{D}$,
a natural transformation $\phi: F \rightarrow G$ is a family

$$
\left(\phi_{C}: F C \rightarrow G C\right)_{c \in|\mathbf{C}|}
$$

of arrows in \mathbf{D} indexed by objects in \mathbf{C}, such that

$$
\begin{aligned}
& F C \xrightarrow{\phi_{C}} G C C \\
& F f \downarrow \\
& F C^{\prime} \xrightarrow[\phi_{C^{\prime}}]{\downarrow} G C^{\prime}
\end{aligned}
$$

The collection of all nat. transfs. from F to G denoted $N a t(F, G)$

Defn. ϕ is a natural isomorphism if every component ϕ_{C} is an isomorphism.

Examples

- identity transformation: $\mathrm{id}_{\mathrm{F}}: F \rightarrow F$ for any $F: \mathbf{C} \rightarrow \mathbf{D}$
- singleton set: $\eta: \operatorname{Id}_{\text {Sets }} \rightarrow \mathcal{P}$

$$
\eta_{X}: X \rightarrow \mathcal{P} X \quad \eta_{X}(x)=\{x\}
$$

- Is there any transformation $\zeta: \mathcal{P} \rightarrow \mathrm{Id}_{\text {Sets }}$?

$$
\zeta_{X}: \mathcal{P} X \rightarrow X
$$

No, e.g. the component at \emptyset cannot exist...
How about nonempty powerset? $\zeta: \mathcal{P}^{+} \rightarrow I_{\text {Sets }}$?
No: take $X=\{\boldsymbol{\&}, \boldsymbol{\uparrow}\}$, the naturality condition must fail for $f: X \rightarrow X=\{\boldsymbol{\rho} \mapsto \boldsymbol{\phi}, \boldsymbol{\phi} \mapsto \boldsymbol{\rho}\}$
(NB. $(\mathcal{P} f)(X)=X)$

