Hom functors

An arrow $f: A \rightarrow B$ in (locally small) \mathbf{C} induces a function:

$$
f \circ-: \operatorname{hom}(X, A) \rightarrow \operatorname{hom}(X, B)
$$

for any object X.
-This gives a covariant hom-functor $\operatorname{Hom}(X,-): \mathbf{C} \rightarrow$ Sets:

$$
\operatorname{Hom}(X, A)=\operatorname{hom}_{\mathbf{C}}(X, A) \quad \operatorname{Hom}(X, f)=f \circ-
$$

Such functors are called representable.

- Also contravariant hom-functors $\operatorname{Hom}(-, X)=\mathbf{C}^{\mathrm{op}} \rightarrow$ Sets:

$$
\operatorname{Hom}(A, X)=\operatorname{hom}_{\mathbf{C}}(A, X) \quad \operatorname{Hom}(f, X)=-\circ f
$$

- Finally, the mixed-variant hom-functor:

$$
\operatorname{Hom}(-,-)=\mathbf{C}^{\mathrm{op}} \times \mathbf{C} \rightarrow \text { Sets }
$$

Embeddings

Defn: A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is an embedding if it is:

- faithful,
- injective on objects.

Examples:

- if \mathbf{C} is a subcategory of \mathbf{D}, then the inclusion is an embedding.
- the slice category \mathbf{C} / A embeds into the arrow category \mathbf{C}.
- Sets embeds into Pos

Defn: A full embedding is an embedding that is full.

Preservation by functors

Defn. $F: \mathbf{C} \rightarrow \mathbf{D}$ preserves monos (epis, isos etc.) if for any $f: A \rightarrow B$ in \mathbf{C}, if f is mono (epi, iso etc.) then so is $F(f)$.
Fact. All functors preserve isos, sections and retractions.
(But not all preserve monos or epis!)
Defn. $F: \mathbf{C} \rightarrow \mathbf{D}$ preserves limits if it maps limiting cones to limiting cones.
(Similarly, F can preserve products, finite limits, colimits, etc.)
Theorem: Representable functors preserve limits.
Exercise: Show that the forgetful functor $U: \mathbf{P o s} \rightarrow$ Sets is representable.

Functor composition

For $F: \mathbf{C} \rightarrow \mathbf{D}$ and $G: \mathbf{D} \rightarrow \mathbf{E}$, the composition:

$$
G \circ F: \mathbf{C} \rightarrow \mathbf{E}
$$

is defined by: $(G \circ F)(A)=G(F(A))$

$$
(G \circ F)(f)=G(F(f))
$$

Categories form a category!

Cat - the category of all small categories and functors.
(also CAT - the "superlarge category" of all categories)
Facts. The empty category is initial in Cat, the trivial one-object category is final, product of categories is categorical product in Cat.
Exercise: What are isomorphisms in Cat?

