Functors

Functors = morphisms between categories

Defn. A functor $F : \mathbb{C} \to \mathbb{D}$ from \mathbb{C} to \mathbb{D} consists of:

- a function $F: |\mathbf{C}| \to |\mathbf{D}|$ (possibly large),

- for each
$$A,B\in |\mathbf{C}|$$
 , a function

$$F: \hom_{\mathbf{C}}(A, B) \to \hom_{\mathbf{D}}(FA, FB),$$

s.t.

- $F(1_A) = 1_{FA}$ for $A \in |\mathbf{C}|$ (F preserves identities),

- $F(f \circ g) = Ff \circ Fg$ for $g : A \to B$, $f : B \to C$ in C(F preserves composition).

Defn. F is:

- full, if each is surjective,
- faithful, if each is injective.

Examples

- Identity functor $\mathrm{Id}:\mathbf{C}\to\mathbf{C}$, for any $\,\mathbf{C}$
- Constant functor $K_A : \mathbf{C} \to \mathbf{D}$ for any $A \in \mathbf{D}$:

 $K_A(B) = A$, $K_A(f) = 1_A$ for any $B \in |\mathbf{C}|$, $f: B \to C$

- What is a functor between posets?
- Powerset functor: $\mathcal{P}:\mathbf{Sets}\to\mathbf{Sets}$

--
$$\mathcal{P}(A) = \{B \mid B \subseteq A\}$$
 for any set A
-- $\mathcal{P}(f)(B) = \{f(b) \mid b \in B\}$ for any $f : A \to C$, $B \subseteq A$.

- Contravariant powerset functor: $\overleftarrow{\mathcal{P}} : \mathbf{Sets}^{\mathrm{op}} \to \mathbf{Sets}$ -- $\overleftarrow{\mathcal{P}}(A) = \{B \mid B \subseteq A\}$ for any set A-- $\overleftarrow{\mathcal{P}}(f)(D) = \{a \in A \mid f(a) \in D\}$ for any function $f : A \to B$ and $D \subseteq B$.

Examples ctd.

- Projection functors: $\mathbf{C} \xleftarrow{\pi_1} \mathbf{C} \times \mathbf{D} \xrightarrow{\pi_2} \mathbf{D}$
- The product functor: any choice in C of products $A \times B$ for every A and B, defines a functor:

 $\times : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$

(action on arrows defined by pairing)

- Forgetful functors:
 - -- $U: \mathbf{Pos} \to \mathbf{Sets}$ $(A, \leq) \mapsto A$
 - -- $U: \mathbf{Mon} \to \mathbf{Sets}$ $(M, 1, \cdot) \mapsto M$ etc.

They are faithful but usually not full.

- The free monoid functor: $F: \mathbf{Sets} \to \mathbf{Mon}$

-- on objects:
$$FX = X^* \left(= \bigcup_{n \in \mathbb{N}} X^n \right)$$

-- on functions: $F(f)(x_1, ..., x_n) = (f(x_1), ..., f(x_n))$