Functors

Functors $=$ morphisms between categories

Defn. A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ from \mathbf{C} to \mathbf{D} consists of:

- a function $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$ (possibly large),
- for each $A, B \in|\mathbf{C}|$, a function

$$
F: \operatorname{hom}_{\mathbf{C}}(A, B) \rightarrow \operatorname{hom}_{\mathbf{D}}(F A, F B)
$$

s.t.

- $F\left(1_{A}\right)=1_{F A}$ for $A \in|\mathbf{C}|$ (F preserves identities),
- $F(f \circ g)=F f \circ F g$ for $g: A \rightarrow B, f: B \rightarrow C$ in C
(F preserves composition).
Defn. F is:
- full, if each \bullet is surjective,
- faithful, if each ${ }^{\circ}$ is injective.

Examples

- Identity functor Id : C $\rightarrow \mathbf{C}$, for any \mathbf{C}
- Constant functor $K_{A}: \mathbf{C} \rightarrow \mathbf{D}$ for any $A \in \mathbf{D}$:

$$
K_{A}(B)=A, \quad K_{A}(f)=1_{A} \text { for any } B \in|\mathbf{C}|, f: B \rightarrow C
$$

-What is a functor between posets?

- Powerset functor: $\mathcal{P}:$ Sets \rightarrow Sets
-- $\mathcal{P}(A)=\{B \mid B \subseteq A\}$ for any set A
-- $\mathcal{P}(f)(B)=\{f(b) \mid b \in B\}$ for any $f: A \rightarrow C, B \subseteq A$.
- Contravariant powerset functor: $\overleftarrow{\mathcal{P}}:$ Sets $^{\mathrm{op}} \rightarrow$ Sets

$$
--\overleftarrow{\mathcal{P}}(A)=\{B \mid B \subseteq A\} \text { for any set } A
$$

$$
-\overleftarrow{\mathcal{P}}(f)(D)=\{a \in A \mid f(a) \in D\} \text { for any }
$$ function $f: A \rightarrow B$ and $D \subseteq B$.

Examples ctd.

- Projection functors: $\mathbf{C} \stackrel{\pi_{1}}{\longleftrightarrow} \mathbf{C} \times \mathbf{D} \xrightarrow{\pi_{2}} \mathbf{D}$
- The product functor: any choice in \mathbf{C} of products $A \times B$ for every A and B, defines a functor:

$$
\times: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}
$$

(action on arrows defined by pairing)

- Forgetful functors:
-- $U:$ Pos \rightarrow Sets
$(A, \leq) \mapsto A$
-- U : Mon \rightarrow Sets
$(M, 1, \cdot) \mapsto M \quad$ etc.
They are faithful but usually not full.
-The free monoid functor: F : Sets \rightarrow Mon
-- on objects: $F X=X^{*}\left(=\bigcup_{n \in \mathbb{N}} X^{n}\right)$
-- on functions: $F(f)\left(x_{1}, \ldots, x_{n}\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$

