Pullbacks

Defn. A pullback of two arrows $A \xrightarrow{p} C \xleftarrow{g} B$ is an object P with arrows $A \xleftarrow{p} P \xrightarrow{q} B$ s.t.:

- $f \circ p = g \circ q$, - for every $A \xleftarrow{p'} P' \xrightarrow{q'} B$ s.t. $f \circ p' = g \circ q'$ there is a unique $m : P' \to P$ s.t. $p \circ m = p'$, $q \circ m = q'$.

Example. In Sets, take $P = \{(a, b) \in A \times B \mid f(a) = g(b)\}$. (Exercise: check how this works when f and/or g is a mono)

Facts about pullbacks

- Pullbacks, if they exist, are unique up to isomorphism.
- if ${f C}$ has all products and equalizers, then it has all pullbacks.
- if C has all pullbacks and a final object, then it has all (binary) products and equalizers.

- If $g \downarrow f$ is a pullback and f is a mono then g is a mono.

- -- if the two squares are pullbacks, so is the outer rectangle.
- -- if the right square and the outer rectangle are pullbacks, so is the left square.

Defn. A pushout of two arrows $A \xleftarrow{f} C \xrightarrow{g} B$ is an object P with arrows $A \xrightarrow{p} P \xleftarrow{q} B$ s.t.:

- $p \circ f = q \circ g$, - for every $A \xrightarrow{p'} P' \xleftarrow{q'} B$ s.t. $p' \circ f = q \circ g'$ there is a unique $m : P \to P'$ s.t. $m \circ p = p', m \circ q = q'$.

Example. In Sets, take $P = (A + B)/\equiv$, where \equiv is the least equivalence on A + B s.t. $f(c) \equiv g(c)$ for all $c \in C$.

Pushouts glue together "shared" elements