Pullbacks

Defn. A pullback of two arrows $A \xrightarrow{f} C \nleftarrow^{g} B$ is an object P with arrows $A \stackrel{p}{\leftarrow} P \xrightarrow{q} B$ s.t.:
$-f \circ p=g \circ q$,

- for every $A \lessdot p^{\prime} P^{\prime} \xrightarrow{q^{\prime}} B$ s.t. $f \circ p^{\prime}=g \circ q^{\prime}$
there is a unique $m: P^{\prime} \rightarrow P$ s.t. $p \circ m=p^{\prime}, q \circ m=q^{\prime}$.

Example. In Sets, take $P=\{(a, b) \in A \times B \mid f(a)=g(b)\}$.
(Exercise: check how this works when f and/or g is a mono)

Facts about pullbacks

- Pullbacks, if they exist, are unique up to isomorphism.
- if \mathbf{C} has all products and equalizers, then it has all pullbacks.
- if C has all pullbacks and a final object, then it has all (binary) products and equalizers.
- If $g \downarrow \longrightarrow{ }^{~} \downarrow$ is a pullback and f is a mono then g is a mono.
- In a commuting diagram:

-- if the two squares are pullbacks, so is the outer rectangle.
-- if the right square and the outer rectangle are pullbacks, so is the left square.

Pushouts

pushout = co-pullback

Defn. A pushout of two arrows $A \stackrel{f}{\leftarrow} C \xrightarrow{g} B$ is an object P with arrows $A \xrightarrow{p} P \stackrel{q}{q^{q}} B$ s.t.:
$-p \circ f=q \circ g$,

- for every $A \xrightarrow{p^{\prime}} P^{\prime} \stackrel{q^{\prime}}{\leftarrow} B$ s.t. $p^{\prime} \circ f=q \circ g^{\prime}$ there is a unique $m: P \rightarrow P^{\prime}$ s.t. $m \circ p=p^{\prime}, m \circ q=q^{\prime}$.

Example. In Sets, take $P=(A+B) / \equiv$, where \equiv is the least equivalence on $A+B$ s.t. $f(c) \equiv g(c)$ for all $c \in C$.

Example

Pushouts glue together "shared" elements

