Products

Defn. A product of two objects A, B is an object $A \times B$ with arrows $\pi_1: A \times B \to A, \pi_2: A \times B \to B$, such that for any object C with arrows $f: C \to A$, $g: C \to B$ there is a unique arrow $m: C \to A \times B$ such that $\pi_1 \circ m = f$ and $\pi_2 \circ m = g$.

Example. In Sets, Cartesian product is a product. In a poset, product = greatest lower bound.

Fact: Products, if they exist, are unique up to isomorphism.

Arrow pairing

Take $f : A \to B$, $g : C \to D$, and assume $A \times C$, $B \times D$ exist. The pairing of f and g:

 $f \times g : A \times C \to B \times D$

is defined by $f \times g = \langle f \circ \pi_A, g \circ \pi_C \rangle$:

Fact: $(f' \circ f) \times (g' \circ g) = (f' \times g') \circ (f \times g)$

Exercises

- Product is commutative up to iso: $A\times B\cong B\times A$
- Define a product of any family of objects.
 (What is a product of the empty family?)
- Product is associative up to iso: $A\times (B\times C)\cong (A\times B)\times C$
- What are products in Mon? In Pos?
- Define the category of sets and *partial* functions. Describe products in that category.
- Let 1 be a final object. Prove $1 \times A \cong A$.
- Let 0 be an initial object. Is $0\times A$ always initial?

Coproducts

Defn. A coproduct of two objects A, B is an object A + Bwith arrows $\iota_1: A \to A + B$, $\iota_2: B \to A + B$, such that for any object C with arrows $f: A \to C$, $g: B \to C$ there is a unique arrow $m: A + B \to C$ such that $m \circ \iota_1 = f$ and $m \circ \iota_2 = g$.

Example. In Sets, disjoint sum is a coproduct.

In a poset, coproduct = least upper bound.

Dualize facts and exercises about products

Equalizers

Defn. An equalizer of two arrows $f, g : A \to B$ is an arrow $e : E \to A$ such that:

-
$$f \circ e = g \circ e$$
 , and

- for every $d:D\to A$ s.t. $f\circ d=g\circ d$ there is a unique $m:D\to E$ s.t. $e\circ m=d$

Example. In Sets, take $E = \{a \in A \mid f(a) = g(a)\} \subseteq A$.

Facts: - Equalizers, if they exist, are unique up to isomorphism.

- Every equalizer is a monomorphism.
- Every epi equalizer is an isomorphism.

Coequalizers

Defn. A coequalizer of two arrows $f, g : A \to B$ is an arrow $c : B \to C$ such that:

- $c \circ f = c \circ g$, and
- for every $d: B \to D$ s.t. $d \circ f = d \circ g$ there is a unique $m: C \to D$ s.t. $m \circ c = d$ $A \xrightarrow{f} B \xrightarrow{c} C$

Example. In Sets, take $C = B/\equiv$, where \equiv is the least equivalence such that $f(a) \equiv g(a)$ for all $a \in A$.

- Facts: Coequalizers, if they exist, are unique up to isomorphism.
 - Every coequalizer is an epimorphism.
 - Every mono coequalizer is an isomorphism.