## Products

Defn. A product of two objects $A, B$ is an object $A \times B$ with arrows $\pi_{1}: A \times B \rightarrow A, \pi_{2}: A \times B \rightarrow B$, such that for any object $C$ with arrows $f: C \rightarrow A$, $g: C \rightarrow B$ there is a unique arrow $m: C \rightarrow A \times B$ such that $\pi_{1} \circ m=f$ and $\pi_{2} \circ m=g$.

( $m$ is denoted $\langle f, g\rangle$ )

Example. In Sets, Cartesian product is a product. In a poset, product = greatest lower bound.

Fact: Products, if they exist, are unique up to isomorphism.

## Arrow pairing

Take $f: A \rightarrow B, g: C \rightarrow D$, and assume $A \times C$, $B \times D$ exist. The pairing of $f$ and $g$ :

$$
f \times g: A \times C \rightarrow B \times D
$$

is defined by $f \times g=\left\langle f \circ \pi_{A}, g \circ \pi_{C}\right\rangle$ :

$$
\begin{aligned}
& A \longleftarrow{ }^{\pi_{A}} A \times C \xrightarrow{\pi_{C}} C
\end{aligned}
$$

Fact: $\left(f^{\prime} \circ f\right) \times\left(g^{\prime} \circ g\right)=\left(f^{\prime} \times g^{\prime}\right) \circ(f \times g)$

## Exercises

- Product is commutative up to iso: $A \times B \cong B \times A$
- Define a product of any family of objects. (What is a product of the empty family?)
- Product is associative up to iso: $A \times(B \times C) \cong(A \times B) \times C$
-What are products in Mon? In Pos?
- Define the category of sets and partial functions. Describe products in that category.
- Let 1 be a final object. Prove $1 \times A \cong A$.
- Let 0 be an initial object. Is $0 \times A$ always initial?


## Coproducts

Defn. A coproduct of two objects $A, B$ is an object $A+B$ with arrows $\iota_{1}: A \rightarrow A+B, \iota_{2}: B \rightarrow A+B$, such that for any object $C$ with arrows $f: A \rightarrow C$, $g: B \rightarrow C$ there is a unique arrow $m: A+B \rightarrow C$ such that $m \circ \iota_{1}=f$ and $m \circ \iota_{2}=g$.

( $m$ is denoted $[f, g]$ )

Example. In Sets, disjoint sum is a coproduct. In a poset, coproduct $=$ least upper bound.

Dualize facts and exercises about products

## Equalizers

Defn. An equalizer of two arrows $f, g: A \rightarrow B$ is an arrow $e: E \rightarrow A$ such that:

- $f \circ e=g \circ e$, and
- for every $d: D \rightarrow A$ s.t. $f \circ d=g \circ d$ there is a unique $m: D \rightarrow E$ s.t. $e \circ m=d$


Example. In Sets, take $E=\{a \in A \mid f(a)=g(a)\} \subseteq A$.
Facts: - Equalizers, if they exist, are unique up to isomorphism.

- Every equalizer is a monomorphism.
- Every epi equalizer is an isomorphism.


## Coequalizers

Defn. A coequalizer of two arrows $f, g: A \rightarrow B$ is an arrow $c: B \rightarrow C$ such that:

- $c \circ f=c \circ g$, and
- for every $d: B \rightarrow D$ s.t. $d \circ f=d \circ g$
$D$ there is a unique $m: C \rightarrow D$ s.t. $m \circ c=d$


Example. In Sets, take $C=B / \equiv$, where $\equiv$ is the least equivalence such that $f(a) \equiv g(a)$ for all $a \in A$.

Facts: - Coequalizers, if they exist, are unique up to isomorphism.

- Every coequalizer is an epimorphism.
- Every mono coequalizer is an isomorphism.

