Even more examples

-Pos : objects = posets, arrows = motononic functions
$\left(f:\left(A, \leq_{A}\right) \rightarrow\left(B, \leq_{B}\right)\right.$ s.t. $\left.a \leq_{A} a^{\prime} \Longrightarrow f(a) \leq_{B} f\left(a^{\prime}\right)\right)$
-Mon: objects $=$ monoids, arrows $=$ monoid homomorphisms

$$
\begin{aligned}
& f:\left(M, \cdot_{M}, 1_{M}\right) \rightarrow\left(N, \cdot_{N}, 1_{N}\right) \text { s.t. } \\
& \quad f\left(x \cdot_{M} y\right)=f(x) \cdot_{N} f(y) \quad f\left(1_{M}\right)=1_{N}
\end{aligned}
$$

- Grp : groups and group homomorphisms
- Met : metric spaces and nonexpansive maps
- Top : topological spaces and continuous maps
- Mes: measurable spaces and measurable functions

Yet more examples

- Rel : objects = sets, arrows = binary relations
-- relation composition:

$$
\begin{aligned}
& \text { for } R \subseteq A \times B, S \subseteq B \times C \text {, define } S \circ R \subseteq A \times C \text { by: } \\
& \qquad a(S \circ R) c \Longleftrightarrow \exists b \in B . a R b, b S c
\end{aligned}
$$

-- identities = equality relations
-Mat: objects = natural numbers, arrows in $\operatorname{hom}(m, n)=$ real-valued $m \times n$ matrices
-- composition = matrix multiplication
-- identities = unit matrices

Size issues

We could say "a category is a set of objects, set of arrows etc."

But we do not!

Problem: we want Sets to be a category, but the set of all sets does not exist.

Formally, objects and arrows form classes. (see Mac Lane or Borceux for details)

Like sets, but can be larger

Defn. A category is small if its objects and arrows form sets.
Defn. A category is locally small if every $\operatorname{hom}(A, B)$ is a set.
Most categories that we will consider are locally small.

Subcategories

Defn. A subcategory of a category \mathbf{C} is any category \mathbf{D} s.t.
$-|\mathbf{D}| \subseteq|\mathbf{C}|$,

- for any $A, B \in|\mathbf{D}|, \operatorname{hom}_{\mathbf{D}}(A, B) \subseteq \operatorname{hom}_{\mathbf{C}}(A, B)$,
- composition on arrows in \mathbf{D} coincides with that in \mathbf{C},
- identities in \mathbf{D} coincide with those in \mathbf{C}.

A subcategory is full if $\operatorname{hom}_{\mathbf{D}}(A, B)=\operatorname{hom}_{\mathbf{C}}(A, B)$ for all $A, B \in|\mathbf{D}|$.

Examples:

- Sets ${ }_{\text {fin }}$ is a full subcategory of Sets.
- Sets ${ }_{1-1}$ is a subcategory of Sets, but it is not full.

Note: full subcategories are determined by their objects.

Duality principle

Given a category \mathbf{C}, the opposite (or dual) category $\mathbf{C}^{\text {op }}$ is defined by:
$-\left|\mathbf{C}^{\mathrm{op}}\right|=|\mathbf{C}|$

- $\operatorname{hom}_{\mathbf{C}^{\text {op }}}(A, B)=\operatorname{hom}_{\mathbf{C}}(B, A)$ for $A, B \in|\mathbf{C}|$
- composition: define $g \circ f$ in $\mathbf{C}^{\text {op }}$ to be $f \circ g$ in \mathbf{C}.
- identities in C^{op} are as in \mathbf{C}.

Fact. $\left(\mathbf{C}^{\mathrm{op}}\right)^{\mathrm{op}}=\mathbf{C}$
For every \mathcal{K} (definition, theorem, ...), its dual (or co- \mathcal{K})
is obtained by reversing all arrows.
Fact. If a statement is true for all categories, then its dual is true for all categories.

Products of categories

Defn. The product $\mathbf{C} \times \mathbf{D}$ of categories \mathbf{C} and \mathbf{D} is defined by:

- $|\mathbf{C} \times \mathbf{D}|=|\mathbf{C}| \times|\mathbf{D}|$ (objects are pairs of objects)
$-\operatorname{hom}_{\mathbf{C} \times \mathbf{D}}((A, B),(C, D))=\operatorname{hom}_{\mathbf{C}}(A, C) \times \operatorname{hom}_{\mathbf{D}}(B, D)$ (arrows are pairs of arrows)
- composition and identities are defined pointwise:

$$
\begin{aligned}
(f, g) \circ(h, k) & =(f \circ h, g \circ k) \\
1_{(A, B)} & =\left(1_{A}, 1_{B}\right)
\end{aligned}
$$

Exercises: What is the product of two monoids? Posets? What is the opposite (dual) of a monoid? A poset?

Arrow categories

Defn. For a category \mathbf{C}, its arrow category $\mathbf{C} \rightarrow$ is as follows:

- objects of $\mathbf{C} \rightarrow$ are arrows of \mathbf{C}
- arrows from $f: A \rightarrow B$ to $g: C \rightarrow D$
are pairs of arrows $(h: A \rightarrow C, k: B \rightarrow D)$ such that:

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \begin{array}{c}
h \downarrow \\
\stackrel{\downarrow}{C} \xrightarrow[g]{ }{ }^{\downarrow} D
\end{array}
\end{aligned}
$$

- composition is pointwise, identities are pairs of identities.

Exercise. Check that composition is well-defined.

Slice categories

Defn. For an object A in \mathbf{C}, the slice category \mathbf{C} / A is as follows:

- objects of \mathbf{C} / A are arrows f in \mathbf{C} with $\operatorname{cod}(f)=A$
- arrows from $f: B \rightarrow A$ to $g: C \rightarrow A$ are arrows $h: B \rightarrow C$ such that:

$$
g \circ h=f
$$

- composition and identities are as in \mathbf{C}.

Exercise. Define the coslice category A / \mathbf{C}, where objects are arrows with $\operatorname{dom}(f)=A$.

