Facts about left adjoints

Theorem: Left adjoints to any fixed G, if they exist, are unique up to natural isomorphism.

Theorem: If F is left adjoint to G, then:

- F preserves colimits, - G preserves limits.

Theorem: Let D be locally small & complete (ie. have all limits). A functor $G : \mathbf{D} \to \mathbf{C}$ has a left adjoint if and only if:

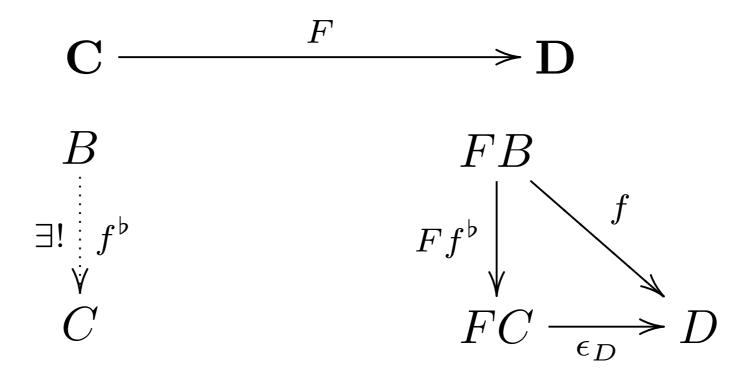
- G preserves limits,

- for every $C \in |\mathbf{C}|$ there exists a set (ie not a proper class) $\{f_i : C \to GD_i \mid i \in \mathcal{I}\}$ of arrows such that for each $D \in \mathbf{D}$ and $f : C \to GD$, there exist $i \in \mathcal{I}$ and $g : D_i \to D$ such that $f = Gg \circ f_i$.

Cofree objects

Consider a functor $F : \mathbb{C} \to \mathbb{D}$. Defn. Given an object D in \mathbb{D} , a cofree object over D w.r.t. Fis an object C in \mathbb{C} with an arrow $\epsilon_D : FC \to D$ in \mathbb{D} (the counit arrow) such that

for every B in \mathbb{C} with an arrow $f : FB \to D$ there exists a unique arrow $f^{\flat} : B \to C$ s.t. $\epsilon_D \circ Ff^{\flat} = f$.



Examples

- For a monotonic function $f: C \to D$ between posets, the cofree element over $d \in D$ is the greatest element $c \in C$ such that $f(c) \leq d$. Mak

Make counit arrows explicit!

Exercise: What is the cofree object over (A, B)wrt. the diagonal functor $\Delta : \mathbf{C} \to \mathbf{C} \times \mathbf{C}$?

- Fix a set A. For a functor $A \times -: \mathbf{Sets} \to \mathbf{Sets}$, a cofree set over a set B is the set of functions B^A .
- A cofree set over a monoid $(M, \star, 1)$ wrt. the free monoid functor $(-)^* : \mathbf{Sets} \to \mathbf{Mon}$ is M.

Facts about cofree objects

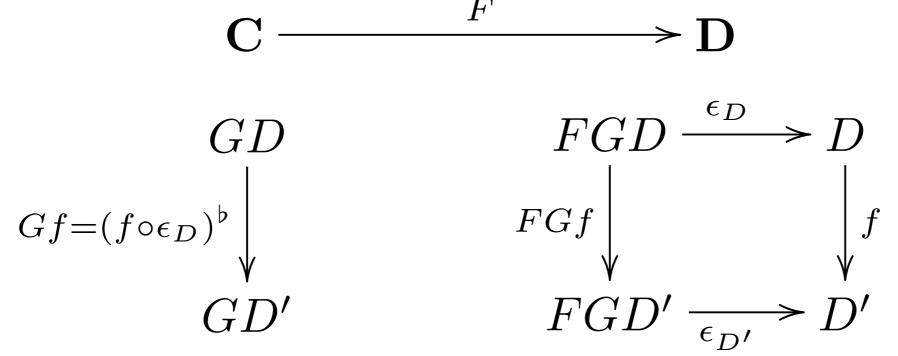
Fact: For a functor $F : \mathbb{C} \to \mathbb{D}$, cofree objects over $D \in |\mathbb{D}|$ are final objects in the comma category $F \downarrow K_D$ where $K_D : \mathbb{1} \to \mathbb{D}$ is the functor constant at D.

Corollary: Cofree objects, if they exist, are unique up to isomorphism.

Fact: If C is cofree over D wrt. $F : \mathbb{C} \to \mathbb{D}$ then for each $B \in |\mathbb{C}|$ there is a bijection $(-)^{\flat} : \mathbb{C}(B, C) \cong \mathbb{D}(FB, D)$

Cofree objects are functorial

Consider a functor $F : \mathbf{C} \to \mathbf{D}$. If every $D \in |\mathbf{D}|$ has a cofree object $GD \in |\mathbf{C}|$ wrt. Fthen the mapping $D \mapsto GD$ $f: D \to D' \mapsto (f \circ \epsilon_D)^{\flat}$ defines a functor $G : \mathbf{D} \to \mathbf{C}$. Further, $\epsilon : FG \to \mathrm{Id}_D$ is a natural transformation.



Right adjoints

Defn. A functor $G : \mathbf{D} \to \mathbf{C}$ is right adjoint to $F : \mathbf{C} \to \mathbf{D}$ with counit $\epsilon : FG \to \mathrm{Id}_{\mathbf{D}}$ if for every $D \in |\mathbf{D}|$, GD with ϵ_D is cofree over D wrt. F.

Examples:

- "the" product functor $\times: \mathbf{C} \times \mathbf{C} \to \mathbf{C}$ is right adjoint to the diagonal functor $\Delta: \mathbf{C} \to \mathbf{C} \times \mathbf{C}$.
- For any set A, a right adjoint to $A \times -: \mathbf{Sets} \to \mathbf{Sets}$ is denoted $(-)^A$ and defined by: B^A - the set of functions from A to Bfor $f: B \to C$, $f^A = f \circ -: B^A \to C^A$
- Defn: A category is cartesian closed if it has final objects, products and if each functor $A \times -$ has a right adjoint.