Introduction to universal algebra

Defn: signature Σ =

- a set Σ of operation symbols
- an arity function $\operatorname{ar}: \Sigma \to \mathbb{N}$.

Defn: A Σ -algebra $\$ (or a model for Σ) A is:

- a set |A| (the carrier),
- for each $f\in \Sigma$, a function $f^A:|A|^{\operatorname{ar}(f)}\to |A|$.

Defn: A Σ -algebra homomorphism $h : A \to B$ is a function $h : |A| \to |B|$ such that $h(f^A(a_1, \dots, a_n)) = f^B(h(a_1), \dots, h(a_n))$ for each $f \in \Sigma$ and $a_1, \dots, a_n \in |A|$.

Fact: Σ -algebras and their morphisms form a category Σ -alg.

Terms, equations, theories

Defn: The set $T_{\Sigma}X$ of Σ -terms over X is defined by induction:

- if $x \in X$ then x is a term,
- if $f \in \Sigma$ and $t_1, \ldots, t_{\operatorname{ar}(f)}$ are terms then $f(t_1, \ldots, t_{\operatorname{ar}(f)})$ is a term.
- Fact: for a Σ -algebra A, every $g: X \to |A|$ extends uniquely to $g^{\sharp}: T_{\Sigma}X \to |A|$.
- Defn: A Σ -equation is a pair of Σ -terms, written s=t .

A theory is a set of equations.

Defn: An equation s = t holds in an algebra A

if for every $g: X \to |A|$ there is $g^{\sharp}(s) = g^{\sharp}(t)$.

- Defn: An algebra A is a model (algebra) of a theory ${\mathcal T}$ if every equation in ${\mathcal T}$ holds in A.
- Defn: T-alg the full subcategory of $\Sigma\text{-}alg$ with models of $\mathcal T$ as objects

Generated and free algebras

Defn: An algebra
$$A$$
 is generated by $g: X \to |A|$ if
 $\forall a \in |A|. \exists t \in T_{\Sigma}X. g^{\sharp}(t) = a$

Defn: A \mathcal{T} -algebra A is free over X (with $g: X \to |A|$) if:

- \boldsymbol{A} is generated by \boldsymbol{g} ,

- no equations hold in A except those provable from \mathcal{T} . "no confusion "

Fact: For every ${\mathcal T}\,$ and X , a free $\,{\mathcal T}\mbox{-algebra}\,$ over $X\,$ exists.

Fact: If A is free over X (with $g: X \to |A|$) then for any \mathcal{T} -algebra B, every $h: X \to |B|$ extends uniquely to a homomorphism from A to B.

Free monoids

Defn. The free monoid over a set X is the set of finite sequences:

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

with concatenation as multiplication and $\epsilon = \langle \rangle$ as unit.

Defn. The free commutative monoid over Xis the set of functions $f: X \to \mathbb{N}$ with pointwise addition as multiplication and the constantly zero function as unit.

Similarly: free groups, free rings, free lattices etc.

Roughly:

 $\operatorname{Monoid} M \operatorname{is} \operatorname{initial} \operatorname{if}$

- for every monoid N
 - there is a unique monoid morphism from M to N.

Monoid M is free over a set X if every interpretation of X to a monoid Nextends to a unique monoid morphism from M to N.

For example, the monoid free over \emptyset is initial.

Free objects

Consider a functor $G : \mathbf{D} \to \mathbf{C}$.

Defn. Given an object X in \mathbb{C} , a free object over X w.r.t. Gis an object A in \mathbb{D} with an arrow $\eta_X : X \to GA$ in \mathbb{C} (the unit arrow) such that

for every B in \mathbb{D} with an arrow $f: X \to GB$ there exists a unique arrow $f^{\sharp}: A \to B$ s.t. $Gf^{\sharp} \circ \eta_X = f$.

