Double law

Fact: Given

there is:

$$
(\delta \circ \gamma) \cdot(\beta \circ \alpha)=(\delta \cdot \beta) \circ(\gamma \cdot \alpha)
$$

Coroll.: Functor composition is a functor $\cdot: \mathbf{D}^{\mathbf{C}} \times \mathbf{E}^{\mathbf{D}} \rightarrow \mathbf{E}^{\mathbf{C}}$
Defn. A 2-category \mathbb{C} consists of:

- a collection $|\mathbb{C}|$ of objects
- for each A, B, a category $\operatorname{Hom}(A, B)$ with identity objects,
- composition functors:
$\operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \rightarrow \boldsymbol{\operatorname { H o m }}(A, C)$
s.t. ...

"The same" but non-isomorphic

- Par : category of sets and partial functions
-- arrow $f: A \rightharpoondown B$ is a function $f: C \rightarrow B$ for some $C \subseteq A$
- Sets ${ }_{*}$: category of pointed sets
-- objects are pairs (A, a) s.t. $a \in A$
-- arrow $f:(A, a) \rightarrow(B, b)$ is a function $f: A \rightarrow B$ s.t. $f(a)=b$
There are functors: $\operatorname{Par} \underset{G}{\stackrel{F}{\rightleftarrows}}$ Set $_{*}$

$$
\begin{array}{ll}
F(A)=(A+\{*\}, *) & F(f)(a)= \begin{cases}f(a) & \text { if } a \in \operatorname{dom}(f) \\
* & \text { otherwise }\end{cases} \\
G(A, a)=A \backslash\{a\} & G(f)(c)= \begin{cases}f(c) \text { if } f(c) \neq b \\
\text { undefined otherwise }\end{cases}
\end{array}
$$

But they are not mutually inverse.

Equivalence of categories

Defn. Categories \mathbf{C}, \mathbf{D} are equivalent if there exist functors $F: \mathbf{C} \rightarrow \mathbf{D}, G: \mathbf{D} \rightarrow \mathbf{C}$ such that: $G \circ F \cong \operatorname{Id}_{\mathbf{C}} \quad F \circ G \cong \operatorname{Id}_{\mathbf{D}} \quad$ (natural isomorphisms)
Example. Par and Sets $_{*}$ are equivalent.
Theorem. $F: \mathbf{C} \rightarrow \mathbf{D}$ is (a part of) an equivalence iff it is:

- full and faithful,
- essentially surjective on objects:

$$
\forall D \in|\mathbf{D}| . \exists C \in|\mathbf{C}| . F(C) \cong D
$$

Equivalent categories have the same categorical properties
Exercise. If C,D are equivalent and \mathbf{C} has products then \mathbf{D} has products.

Yoneda Lemma

An arrow $f: A \rightarrow B$ induces a natural transformation:

$$
\operatorname{Hom}(-, f): \operatorname{Hom}(-, A) \rightarrow \operatorname{Hom}(-, B)
$$

defined by: $\operatorname{Hom}(-, f)_{X}(g: X \rightarrow A)=f \circ g$
Question: Are there any other nat. transfs. of this type? No!

$$
N a t(\operatorname{Hom}(-, A), \operatorname{Hom}(-, B)) \cong \operatorname{hom}(A, B)
$$

In fact, we can replace $\operatorname{Hom}(-, B)$ by any functor:
Yoneda Lemma: For any functor $F: \mathbf{C}^{\mathrm{op}} \rightarrow$ Sets, there is a bijection

$$
\operatorname{Nat}(\operatorname{Hom}(-, A), F) \cong F A
$$

Moreover, the bijection is natural in F and X.

