

 $(\delta \circ \gamma) \cdot (\beta \circ \alpha) = (\delta \cdot \beta) \circ (\gamma \cdot \alpha)$

Coroll.: Functor composition is a functor $\ \cdot : \mathbf{D^C} \times \mathbf{E^D} \to \mathbf{E^C}$

Defn. A 2-category \mathbb{C} consists of:

- a collection $|\mathbb{C}|$ of objects
- for each A, B, a category $\mathbf{Hom}(A, B)$ with identity objects,
- composition functors:

 $\mathbf{Hom}(B,C)\times\mathbf{Hom}(A,B)\to\mathbf{Hom}(A,C)$

"The same" but non-isomorphic

- Par : category of sets and partial functions -- arrow $f:A \multimap B$ is a function $f:C \to B$ for some $C \subseteq A$
- $Sets_*$: category of pointed sets -- objects are pairs (A, a) s.t. $a \in A$ -- $\operatorname{arrow} f: (A,a) \to (B,b)$ is a function $f: A \to B$ s.t. f(a) = bThere are functors: $\operatorname{Par} \xrightarrow{F'} \operatorname{Set}_*$ $F(A) = (A + \{*\}, *) \quad F(f)(a) = \begin{cases} f(a) & \text{if } a \in \text{dom}(f) \\ * & \text{otherwise} \end{cases}$ $G(A, a) = A \setminus \{a\} \qquad G(f)(c) = \begin{cases} f(c) & \text{if } f(c) \neq b \\ \text{undefined otherwise} \end{cases}$

But they are not mutually inverse.

Equivalence of categories

Defn. Categories C, D are equivalent if there exist functors $F : \mathbb{C} \to \mathbb{D}$, $G : \mathbb{D} \to \mathbb{C}$ such that: $G \circ F \cong \mathrm{Id}_{\mathbb{C}}$ $F \circ G \cong \mathrm{Id}_{\mathbb{D}}$ (natural isomorphisms)

Example. Par and \mathbf{Sets}_* are equivalent.

- Theorem. $F : \mathbb{C} \to \mathbb{D}$ is (a part of) an equivalence iff it is:
 - full and faithful,
 - essentially surjective on objects:

$$\forall D \in |\mathbf{D}|. \ \exists C \in |\mathbf{C}|. \ F(C) \cong D$$

Equivalent categories have the same categorical properties

Exercise. If C, D are equivalent and C has products then D has products.

Yoneda Lemma

An arrow $f : A \to B$ induces a natural transformation: $\operatorname{Hom}(-, f) : \operatorname{Hom}(-, A) \to \operatorname{Hom}(-, B)$ defined by: $\operatorname{Hom}(-, f)_X(g : X \to A) = f \circ g$

Question: Are there any other nat. transfs. of this type? No! $Nat(Hom(-, A), Hom(-, B)) \cong hom(A, B)$

In fact, we can replace Hom(-, B) by any functor:

Yoneda Lemma: For any functor $F : \mathbb{C}^{op} \to \mathbf{Sets}$, there is a bijection

$$Nat(Hom(-, A), F) \cong FA$$

Moreover, the bijection is natural in F and X.