Examples ctd.

Consider the list functor: L : Sets \rightarrow Sets

$$
L(X)=X^{*} \quad L(f)\left(x_{1}, \ldots, x_{n}\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

Some natural transformations involving L :

- η : $\mathrm{Id} \rightarrow L$

$$
\eta_{X}(x)=(x)
$$

(singleton)

- $\alpha: \operatorname{Id} \times L \rightarrow L \quad \alpha_{X}(x, l)=x:: l$
(append)
- $\rho: L \rightarrow L$

$$
\rho_{X}(l)=l^{R}
$$

(reverse)

- $\gamma: L \circ L \rightarrow L \quad \gamma_{X}\left(l_{1}, \ldots, l_{n}\right)=l_{1} \cdots l_{n}$
(concatenation)

Naturality means that these functions are polymorphic

Examples ctd.

$-\theta: \overleftarrow{\mathcal{P}} \rightarrow \operatorname{Hom}(-, 2) \quad:$ Sets $^{\text {op }} \rightarrow$ Sets

$$
2=\{\mathbf{t} \mathbf{t}, \mathrm{ff}\}
$$

$$
\theta_{X}: \mathcal{P} X \rightarrow 2^{X}
$$

$$
\theta_{X}(Y)(x)=\mathbf{t t} \Longleftrightarrow x \in Y
$$

Fact. θ is a natural isomorphism.

- Recall U : Pos \rightarrow Sets. Define

$$
\begin{aligned}
& \xi: U \\
& \xi_{(A, \leq)}: \rightarrow \operatorname{Hom}_{\text {Pos }}((1,=),-) \\
& \xi_{(A, \leq)}(a):(1,=) \rightarrow(A, \leq) \\
& \xi_{(A, \leq)}(a)(*)=a
\end{aligned}
$$

Fact. ξ is a natural isomorphism.

Examples ctd.

- Remember $A \times B \cong B \times A$

How to say that this isomorphism "does not depend on A, B "?
Remember $\quad \times:$ Sets $^{2} \rightarrow$ Sets $\quad \times(A, B)=A \times B$
Define $\quad \overline{\times}: \mathbf{S e t s}^{2} \rightarrow$ Sets $\overline{\times}(A, B)=B \times A$

$$
\vartheta: \times \rightarrow \overline{\times} \quad \vartheta_{X, Y}(x, y)=(y, x)
$$

Fact. ϑ is a natural isomorphism.

- Recall that the functor $\times: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}$ depends on a choice of products in \mathbf{C}.

Fact. All these product functors are naturally isomorphic.

Vertical composition

Defn. $(\beta \circ \alpha)_{X}=\beta_{X} \circ \alpha_{X}$
Defn. For any \mathbf{C}, \mathbf{D}, the functor category $\mathbf{D}^{\mathbf{C}}$ has:

- functors $F: \mathbf{C} \rightarrow \mathbf{D}$ as objects,
- natural transformations as arrows.

Composition is vertical, identity transformations are identities.
Example: $\mathbf{C} \times \mathbf{C} \cong \mathbf{C}^{2} \quad$ (2 the 2-object discrete category)
Fact: If \mathbf{D} has (co)products then $\mathbf{D}^{\mathbf{C}}$ has them too.
(calculated pointwise)

Horizontal composition

Defn. $(\beta \cdot \alpha)_{X}=\beta_{G X} \circ H\left(\alpha_{X}\right)=K\left(\alpha_{X}\right) \circ \beta_{F X}$

Multiplication by functor: we write

$$
\begin{aligned}
H \alpha=\mathrm{id}_{H} \cdot \alpha & : H F \rightarrow H G \\
\beta F=\beta \cdot \mathrm{id}_{F} & : H F \rightarrow K F
\end{aligned}
$$

by naturality of β

