Introduction to Category Theory for Computer Scientists

Bartek Klin

bk291@cam.ac.uk
http://www.mimuw.edu.pl/~klin
office FSI5

Literature

• S. Mac Lane:

Categories for the Working Mathematician. Springer, 1998.

• F. Borceux:

Handbook of Categorical Algebra. Springer, 1998.

 S. Awodey: Category Theory. Oxford University Press, 2006.

 J.Adamek, H. Herrlich, G. E. Strecker: Abstract and Concrete Categories: the Joy of Cats.

http://katmat.math.uni-bremen.de/acc/acc.pdf

• M. Barr, C. Wells:

Category Theory Lecture Notes.

http://folli.loria.fr/cds/1999/library/pdf/barrwells.pdf

A glimpse of categorical thinking

The Cartesian product of sets A and B: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ projections:

C

 $\mid m$

Set described in terms of its elements

$$\pi_1 : A \times B \to A \qquad \qquad \pi_1(\langle a, b \rangle) = a$$

$$\pi_2 : A \times B \to B \qquad \qquad \pi_2(\langle a, b \rangle) = b$$

Fact: for any set C with functions $f: C \to A$ and $g: C \to B$, there exists a unique function $m: C \to A \times B$ such that:

Set described in terms of functions to and from other sets

Reversing arrows

Fact: The condition is satisfied by the disjoint sum of A and B:

 $A + B = \{ \langle 1, a \rangle \mid a \in A \} \cup \{ \langle 2, b \rangle \mid b \in B \}$

Category Theory

An abstract theory of functions

- Mathematical objects studied in terms of their relations to other objects
- A unified view on different mathematical structures
- Developed in 1940s for use in algebraic topology
- In Computer Science:
 - semantics of computation
 - functional programming
 - logic
 - type theory

Plan

Categories

Definition. A category consists of:

- objects A, B, C, \ldots
- arrows f, g, h, \ldots (also called morphisms)
- for each arrow f, there are objects ${\rm dom}(f)$ and ${\rm cod}(f)$ (we write $f:A\to B\,$ to say that ${\rm dom}(f)=A, {\rm cod}(f)=B$)
- for arrows $f: A \to B$, $g: B \to C$, there is an arrow $g \circ f: A \to C$ composition
- for each A, there is an arrow $1_A: A \to A$, identity

subject to the following laws:

- $\begin{array}{ccc} & & & \\ \textbf{-} \ h \circ (g \circ f) = (h \circ g) \circ f & \text{for} & \begin{array}{ccc} f: A \rightarrow B, \ g: B \rightarrow C, \\ & & h: C \rightarrow D \end{array}$
- $1_B \circ f = f = f \circ 1_A$ for $f: A \to B$.

Bits of notation

Given a category ${\bf C}$,

- the collection of its objects is denoted $|\mathbf{C}|$
- the collection of its arrows is denoted $\,{\rm Ar}({\bf C})$
- for any objects A,B the collection of arrows $f:A\to B$ is denoted $\hom(A,B)$ or ${\bf C}(A,B).$

An equivalent definition of category:

- a collection A,B,C,\ldots of objects,
- for any objects $A,B, \mbox{a collection} \ \mbox{hom}(A,B)$ of arrows,
- for any $\boldsymbol{A},\boldsymbol{B},\boldsymbol{C}$, a function

 $\circ : \hom(B, C) \times \hom(A, B) \to \hom(A, C)$

- for any A, a distinguished arrow $1_A \in \hom(A, A)$, such that etc.

Examples

Some finite categories:

- a discrete category: category with no arrows except identities.

Categories vs. graphs

Definition. A (directed multi-)graph consists of:

- a set V of vertices
- a set $E\,$ of ${\rm edges}$
- source and target functions $s,t:E \rightarrow V$

Definition. Path in G = (V, E, s, t) is a finite sequence of edges: $e_1e_2e_3 \dots e_n$ s.t. $t(e_i) = s(e_{i+1})$ for i = 1..n - 1

The category of paths on G:

- objects = vertices, arrows = paths
- $dom(e_1 ... e_n) = s(e_1)$ and $cod(e_1 ... e_n) = t(e_n)$
- composition = path concatenation
- identity = empty path

(a separate empty path for every vertex is needed)

Partial orders as categories

Defn. A binary relation \leq on a set A is a preorder if:

- $a \leq a$ for $a \in A$ (reflexivity),
- if $a \leq b$, $b \leq c$ then $a \leq c$, for $a, b, c \in A$ (transitivity).

If, additionally,

- $a \leq b$ and $b \leq a$ implies a = b (antisymmetry),

then \leq is a partial order (and (A, \leq) is a poset).

Fact: a preorder (hence every poset) can be seen as a category. Fact: a category s.t. for any objects A, B there is *at most one* arrow $f : A \to B$, is a preorder. (up to size issues)

$$\textbf{Idea:} \quad A \to B \iff A \leq B$$

Monoids as categories

Defn. A monoid consists of:

- a set M (the carrier)
- an operation $\cdot: M \times M \to M$ (the multiplication)
- an element $1 \in M$ (the unit)
- such that for $x, y, z \in M$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 $1 \cdot x = x = x \cdot 1$

Fact. Categories with one object are exactly monoids. (up to size issues)

- exactly one object •
- arrows = elements of the carrier
- composition = multiplication
- identity = unit

More examples

- \mathbf{Sets} : sets and functions

functions tagged with codomains

- $\mathbf{Sets}_{\mathrm{fin}}\!\!:\!\mathsf{finite}$ sets and functions
- Sets₁₋₁:sets and *injective* functions ($f: A \to B$ injective if $a \neq a'$ implies $f(a) \neq f(a')$)
- sets and surjective functions $(f: A \to B \text{ surjective if } \forall b \in B. \exists a \in A. f(a) = b)$

How about:

- sets and functions $f:A\to B$ such that $|f^{-1}(b)|\leq 2 \quad \mbox{ for every } b\in B$?
- sets and non-surjective functions?

These functions do not compose

Identity is not such