Introduction to Category Theory for Computer Scientists

Bartek Klin

bk291@cam.ac.uk
http://www.mimuw.edu.pl/~klin office FSI5

Literature

- S. Mac Lane:

Categories for the Working Mathematician. Springer, I 998.

- F. Borceux:

Handbook of Categorical Algebra. Springer, I 998.

- S.Awodey: Category Theory. Oxford University Press, 2006.
- J.Adamek, H. Herrlich, G. E. Strecker:

Abstract and Concrete Categories: the Joy of Cats.
http://katmat.math.uni-bremen.de/acc/acc.pdf

- M. Barr, C.Wells:

Category Theory Lecture Notes.
http://folli.loria.fr/cds/1999/library/pdf/barrwells.pdf

A glimpse of categorical thinking

The Cartesian product of sets A and B :

$$
A \times B=\{\langle a, b\rangle \mid a \in A, b \in B\}
$$

projections:
Set described in terms of its elements

$$
\begin{array}{ll}
\pi_{1}: A \times B \rightarrow A & \pi_{1}(\langle a, b\rangle)=a \\
\pi_{2}: A \times B \rightarrow B & \pi_{2}(\langle a, b\rangle)=b
\end{array}
$$

Fact: for any set C with functions $f: C \rightarrow A$ and $g: C \rightarrow B$, there exists a unique function $m: C \rightarrow A \times B$ such that:

$$
\pi_{1} \circ m=f \quad \text { and } \quad \pi_{2} \circ m=g
$$

Set described in terms of functions to and from other sets

Reversing arrows

Coproduct of A and B :
a set D with functions $i_{1}: A \rightarrow D$

$$
i_{2}: B \rightarrow D
$$

such that for any set C with functions

$$
f: A \rightarrow C \quad g: B \rightarrow C
$$

there exists a unique function $m: D \rightarrow C$ such that:

$$
m \circ i_{1}=f \quad \text { and } \quad m \circ i_{2}=g
$$

Fact:The condition is satisfied by the disjoint sum of A and B :

$$
A+B=\{\langle 1, a\rangle \mid a \in A\} \cup\{\langle 2, b\rangle \mid b \in B\}
$$

Category Theory

An abstract theory of functions

- Mathematical objects studied in terms of their relations to other objects
- A unified view on different mathematical structures
- Developed in 1940s for use in algebraic topology
- In Computer Science:
- semantics of computation
- functional programming
- logic
- type theory

Plan

I. Category

Universality
2. Limit
3. Functor
4. Natural transformation

Naturality
(today)
(week 2-3)
(week 3-4)
(week 5)
(week 7)

Functions between sets

$$
\begin{aligned}
& f: A \rightarrow B \\
& A \xrightarrow{f} B
\end{aligned}
$$

Composition: $A \xrightarrow[f]{\xrightarrow{g} B \xrightarrow[g]{ }} C$

$$
(g \circ f)(a)=g(f(a))
$$

Identity:

$$
1_{A}: A \rightarrow A
$$

$$
1_{A}(a)=a
$$

Facts: for any $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$,

$$
(h \circ g) \circ f=h \circ(g \circ f) \quad \text { (composition is associative) }
$$

$$
1_{B} \circ f=f=f \circ 1_{A}
$$

(identity is unit for composition)

Categories

Definition. A category consists of:

- objects A, B, C, \ldots
- arrows f, g, h, \ldots (also called morphisms)
- for each arrow f, there are objects $\operatorname{dom}(f)$ and $\operatorname{cod}(f)$ (we write $f: A \rightarrow B$ to say that $\operatorname{dom}(f)=A, \operatorname{cod}(f)=B$)
- for arrows $f: A \rightarrow B, g: B \rightarrow C$, there is an arrow

$$
g \circ f: A \rightarrow C \quad \text { composition }
$$

- for each A, there is an arrow $1_{A}: A \rightarrow A$,

identity

 subject to the following laws:- $h \circ(g \circ f)=(h \circ g) \circ f$ for

$$
\begin{gathered}
f: A \rightarrow B, g: B \rightarrow C, \\
h: C \rightarrow D
\end{gathered}
$$

$$
-1_{B} \circ f=f=f \circ 1_{A} \quad \text { for } \quad f: A \rightarrow B
$$

Bits of notation

Given a category \mathbf{C},

- the collection of its objects is denoted $|\mathbf{C}|$
- the collection of its arrows is denoted $\operatorname{Ar}(\mathbf{C})$
- for any objects A, B the collection of arrows $f: A \rightarrow B$ is denoted $\operatorname{hom}(A, B)$ or $\mathbf{C}(A, B)$.

An equivalent definition of category:

- a collection A, B, C, \ldots of objects,
- for any objects A, B, a collection $\operatorname{hom}(A, B)$ of arrows,
- for any A, B, C, a function

$$
\circ: \operatorname{hom}(B, C) \times \operatorname{hom}(A, B) \rightarrow \operatorname{hom}(A, C)
$$

- for any A, a distinguished arrow $1_{A} \in \operatorname{hom}(A, A)$, such that etc.

Examples

Some finite categories:

- 0:
(the empty category)
- 1:
- 2: $* \longrightarrow \star$
- 3 :

- a discrete category: category with no arrows except identities.

Categories vs.graphs

Definition. A (directed multi-)graph consists of:

- a set V of vertices
- a set E of edges
- source and target functions $s, t: E \rightarrow V$

Definition. Path in $G=(V, E, s, t)$ is a finite sequence of edges:

$$
e_{1} e_{2} e_{3} \ldots e_{n} \text { s.t. } t\left(e_{i}\right)=s\left(e_{i+1}\right) \text { for } i=1 . . n-1
$$

The category of paths on G :

- objects $=$ vertices, arrows $=$ paths
$-\operatorname{dom}\left(e_{1} \ldots e_{n}\right)=s\left(e_{1}\right)$ and $\operatorname{cod}\left(e_{1} \ldots e_{n}\right)=t\left(e_{n}\right)$
- composition $=$ path concatenation
- identity = empty path
(a separate empty path for every vertex is needed)

Partial orders as categories

Defn. A binary relation \leq on a set A is a preorder if:

- $a \leq a$ for $a \in A$ (reflexivity),
- if $a \leq b, b \leq c$ then $a \leq c$, for $a, b, c \in A$ (transitivity).

If, additionally,

- $a \leq b$ and $b \leq a$ implies $a=b$ (antisymmetry), then \leq is a partial order (and (A, \leq) is a poset).

Fact: a preorder (hence every poset) can be seen as a category.
Fact: a category s.t. for any objects A, B there is at most one arrow $f: A \rightarrow B$, is a preorder.
(up to size issues)
Idea: $A \rightarrow B \Longleftrightarrow A \leq B$

Monoids as categories

Defn. A monoid consists of:

- a set M (the carrier)
- an operation $\cdot: M \times M \rightarrow M$ (the multiplication)
- an element $1 \in M$ (the unit)
such that for $x, y, z \in M$

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z \quad 1 \cdot x=x=x \cdot 1
$$

Fact. Categories with one object are exactly monoids.
Idea:
(up to size issues)

- exactly one object •
- arrows = elements of the carrier
- composition = multiplication
- identity = unit

More examples

- Sets: sets and functions
functions tagged with codomains
- Sets $_{\text {fin }}$: finite sets and functions
- Sets $_{1-1}$:sets and injective functions ($f: A \rightarrow B$ injective if $a \neq a^{\prime}$ implies $f(a) \neq f\left(a^{\prime}\right)$)
- sets and surjective functions ($f: A \rightarrow B$ surjective if $\forall b \in B . \exists a \in A . f(a)=b$)

How about:

- sets and functions $f: A \rightarrow B$ such that $\left|f^{-1}(b)\right| \leq 2 \quad$ for every $b \in B$?

These functions do not compose

- sets and non-surjective functions?

Identity is not such

