An Albebraic Approach to Internet Routing Lectures 04 - 08

Timothy G. Griffin

```
timothy.griffin@cl.cam.ac.uk
            Computer Laboratory
    University of Cambridge, UK
```

Michaelmas Term 2009

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
(3) Lecture 06: Beyond Semirings
(4) Lecture 07: Advanced Constructions I
(5) Lecture 08: Routing without distribution?

5 Bibliography

Lexicographic Semiring, example continued

sp $\overrightarrow{\times}$ bw

Let $(S, \oplus, \otimes, \overline{0}, \overline{1})=\mathrm{sp} \overrightarrow{\times} \mathrm{bw}$.

$$
\begin{aligned}
\mathrm{sp} & =\left(\mathbb{N}^{\infty}, \min ,+, \infty, 0\right) \\
\mathrm{bw} & =\left(\mathbb{N}^{\infty}, \max , \min , 0, \infty\right) \\
\mathrm{sp} \overrightarrow{\times} \mathrm{bw} & =\left(\mathbb{N}^{\infty} \times \mathbb{N}^{\infty}, \min \overrightarrow{\times} \max ,+\times \min ,(\infty, 0),(0, \infty)\right)
\end{aligned}
$$

$$
\begin{aligned}
& (17,10) \oplus(21,100)=(17,10) \\
& (17,10) \oplus(17,100)=(17,100) \\
& (17,10) \otimes(21,100)=(38,10) \\
& (17,10) \otimes(17,100)=(34,10)
\end{aligned}
$$

Sample instance for $\mathrm{sp} \overrightarrow{\times}$ bw

The adjacency matrix

1
2
2
3
4
5 $\left[\begin{array}{ccccc}(\infty, 0) & (2,50) & (8,90) & (6,70) & (\infty, 0) \\ (2,50) & (\infty, 0) & (5,70) & (\infty, 0) & (6,20) \\ (8,90) & (5,70) & (\infty, 0) & (1,50) & (1,10) \\ (6,70) & (\infty, 0) & (1,50) & (\infty, 0) & (\infty, 0) \\ (\infty, 0) & (6,20) & (1,10) & (\infty, 0) & (\infty, 0)\end{array}\right]$

Shortest-path DAG rooted at 1

Shortest-path DAG rooted at 3

Shortest-path DAG rooted at 5

The routing matrix

1
2
2
3
4
4 $\left[\begin{array}{ccccc}2 & { }^{3} & 4 & 5 \\ 5 & (2,50) & (2,50) & (7,50) & (6,70) \\ (8,5) & (5,70) & (6,50) & (6,20) \\ (7,50) & (5,70) & (0, \infty) & (1,50) & (1,10) \\ (8,20) & (6,50) & (1,50) & (0, \infty) & (2,10) \\ (6,20) & (1,10) & (2,10) & (0, \infty)\end{array}\right]$

A Strange Lexicographic Semiring

$\mathrm{sp} \overrightarrow{\times}$ oneforall

Let $(S, \oplus, \otimes, \overline{0}, \overline{1})=\operatorname{sp} \overrightarrow{\times}$ oneforall.

$$
\begin{aligned}
\mathrm{sp} & =\left(\mathbb{N}^{\infty}, \min ,+, \infty, 0\right) \\
\text { oneforall } & =\left(2^{\{a, b, c\}}, \cup, \cap,\{ \},\{a, b, c\}\right) \\
\mathrm{sp} \overrightarrow{\times} \text { oneforall } & =\left(\mathbb{N}^{\infty} \times 2^{\{a, b, c\}}, \min \overrightarrow{\times} \cup,+\times \cap,(\infty,\{ \}),(0,\{a, b,\right.
\end{aligned}
$$

$$
\begin{aligned}
& (17,\{a\}) \oplus(21,\{b\})=(17,\{a\}) \\
& (17,\{a\}) \oplus(17,\{b\})=(17,\{a, b\}) \\
& (17,\{a\}) \otimes(21,\{b\})=(38,\{ \}) \\
& (17,\{a\}) \otimes(17,\{b\})=(34,\{ \})
\end{aligned}
$$

Sample instance for sp $\overrightarrow{\times}$ oneforall

The adjacency matrix

1
2
3
4
5 $\left[\begin{array}{ccccc}(\infty,\{ \}) & 2 & 3 & 4 & 5 \\ (2,\{a\}) & (\infty,\{a\}) & (8,\{b, c\}) & (6,\{a, b\}) & (\infty,\{ \}) \\ (8,\{a, c\}) & (5,\{a, b, c\}) & (\infty,\{a, c\}) & (\infty,\{ \}) & (6,\{c\}) \\ (\infty,\{ \}) & (\infty,\{ \}) & (1,\{b\}) & (1,\{b\}) & (1,\{b\}) \\ (6,\{c\}) & (1,\{b\}) & (\infty,\{ \}) & (\infty,\{ \}) \\ \hline\end{array}\right.$

Sample instance for $\mathrm{sp} \overrightarrow{\times}$ oneforall

Shotest paths — for the first component only — rooted at node 1

The routing matrix

If $\mathbf{R}(i, j)=(v, S)$ and $x \in S$, then there is at least one path of weight v from i to j with x in every arc weight along the path.
1
2
3
4
5 $\left[\begin{array}{ccccc}(0,\{a b c\}) & (2,\{a\}) & (7,\{a, b\}) & (6,\{a, b\}) & (8,\{b\}) \\ (2,\{a\}) & (0,\{a b c\}) & (5, ?) & (6, ?) & (6, ?) \\ (7,\{a, b\}) & (5, ?) & (0,\{a b c\}) & (1, ?) & (1, ?) \\ (8,\{b\}) & (6, ?) & (1, ?) & (0,\{a b c\}) & (2, ?) \\ (8, ?) & (1, ?) & (2, ?) & (0,\{a b c\})\end{array}\right.$

Please fill in the "?"...

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
3) Lecture 06: Beyond Semirings
4. Lecture 07: Advanced Constructions I

5 Lecture 08: Routing without distribution?

6 Bibliography

Challenge

Construct a semiring path so that if $\mathbf{R}(i, j)=(v, W)$, then W is a set of all paths from i to j with weight v.

The Free Monoid over (the set) Σ

$$
\operatorname{free}(\Sigma)=\left(\Sigma^{*}, \cdot, \epsilon\right)
$$

where

- Σ^{*} is the set of all finite sequences over Σ,
- . is concatenation,
- ϵ is the empty sequence.

Given the graph $G=(V, E)$, we might consider using free (E) to represent paths.

A general construction

- $(S \otimes, \overline{1})$ a monoid.
- uniontimes $(S, \otimes, \overline{1})=\left(2^{S}, \cup, \otimes_{\times},\{ \},\{\overline{1}\}\right)$, where

$$
A \otimes_{\times} B=\{a \otimes b \mid a \in A, b \in B\}
$$

Claim

uniontimes $(S, \otimes, \overline{1})$ is a semiring
Will this work?

$$
\text { paths }=\operatorname{uniontimes}(\operatorname{free}(E))
$$

Sample instance for path

But is there a problem?

paths is not q-stable, for any q

$$
\begin{aligned}
\mathbf{R}(1,5)= & \{(1,2)(2,5), \\
& (1,3)(3,5), \\
& (1,3)(3,1)(13)(3,5), \\
& (1,3)(3,1)(13)(3,5)(5,3)(3,2)(2,5), \\
& \ldots
\end{aligned}
$$

But what about sp $\overrightarrow{\times}$ paths?

$$
\begin{aligned}
\mathrm{sp} & =\left(\mathbb{N}^{\infty}, \min ,+, \infty, 0\right) \\
\text { paths } & =\left(2^{E^{*}}, \cup, \cdot \times,\{ \},\{\epsilon\}\right) \\
\mathrm{sp} \overrightarrow{\times} \text { paths } & =\left(\mathbb{N}^{\infty} \times 2^{E^{*}}, \min \overrightarrow{\times} \cup,+\times \cdot \times,(\infty,\{ \}),(0,\{\epsilon\})\right)
\end{aligned}
$$

$$
\begin{aligned}
(17,\{(1,2)(2,3)\}) \oplus(17,\{(1,3)\}) & =(17,\{(1,2)(2,3)\}) \\
(17,\{(1,2)(2,3)\}) \oplus(17,\{(1,3)\}) & =(17,\{(1,2)(2,3),(1,3)\}) \\
(17,\{(1,2)(2,3)\}) \otimes(21,\{(3,4),(3,5)\}) & =(38,\{(1,2)(2,3)(3,4),(1,2)(2 \\
(17,10) \otimes(17,100) & =(34,\{(1,2)(2,3)(3,4),(1,2)(2
\end{aligned}
$$

Show that this "works". What is going on? (on Exercises II list)

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
(3) Lecture 06: Beyond Semirings
(4) Lecture 07: Advanced Constructions I
(5) Lecture 08: Routing without distribution?

- Bibliography

Path Weight with functions on arcs?

For graph $G=(V, E)$, and path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$.
Semiring Path Weight
Weight function $w: E \rightarrow S$

$$
w(p)=w\left(i_{1}, i_{2}\right) \otimes w\left(i_{2}, i_{3}\right) \otimes \cdots \otimes w\left(i_{k-1}, i_{k}\right)
$$

How about functions on arcs?
Weight function $w: E \rightarrow(S \rightarrow S)$

$$
w(p)=w\left(i_{1}, i_{2}\right)\left(w\left(i_{2}, i_{3}\right)\left(\cdots w\left(i_{k-1}, i_{k}\right)(a) \cdots\right)\right)
$$

where a is some value originated by node i_{k} How can we make this work?

Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An endomprhism is a homomorphism mapping a structure to itself.

Let $(S, \oplus, \overline{0})$ be a commutative monoid.
$(S, \oplus, F \subseteq S \rightarrow S, \overline{0}, i, \omega$) is a algebra of monoid endomorphisms (AME) if

- $\forall f \in F \forall b, c \in S: f(b \oplus c)=f(b) \oplus f(c)$
- $\forall f \in F: f(\overline{0})=\overline{0}$
- $\exists i \in F \forall a \in S: i(a)=a$
- $\exists \omega \in F \forall a \in S: \omega(a)=\overline{0}$

Solving (some) equations over a AMEs

We will be interested in solving for x equations of the form

$$
x=f(x) \oplus b
$$

Let

$$
\begin{aligned}
f^{0} & =i \\
f^{k+1} & =f \circ f^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{(k)}(b)=f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{k}(b) \\
& f^{(*)}(b)=f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{k}(b) \oplus \cdots
\end{aligned}
$$

Definition (q stability)

If there exists a q such that for all $b f^{(q)}(b)=f^{(q+1)}(b)$, then f is q-stable. Therefore, $f^{(*)}(b)=f^{(q)}(b)$.

Key result (again)

Lemma

If f is q-stable, then $x=f^{(*)}(b)$ solves the AME equation

$$
x=f(x) \oplus b
$$

Proof: Substitute $f^{(*)}(b)$ for x to obtain

$$
\begin{aligned}
& f\left(f^{(*)}(b)\right) \oplus b \\
= & f(f(q)(b)) \oplus b \\
= & f\left(f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q}(b)\right) \oplus b \\
= & f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \oplus b \\
= & f^{0}(b) \oplus f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \\
= & f^{(q+1)}(b) \\
= & f^{(q)}(b) \\
= & f^{(*)}(b)
\end{aligned}
$$

AME of Matrices

Given an AME $S=(S, \oplus, F)$, define the semiring of $n \times n$-matrices over S,

$$
\mathbb{M}_{n}(S)=\left(\mathbb{M}_{n}(S), \boxplus, G\right),
$$

where for $\mathbf{A}, \mathbf{B} \in \mathbb{M}_{n}(S)$ we have

$$
(\mathbf{A} \boxplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \oplus \mathbf{B}(i, j) .
$$

Elements of the set G are represented by $n \times n$ matrices of functions in F. That is, each function in G is represented by a matrix \mathbf{A} with $\mathbf{A}(i, j) \in F$. If $\mathbf{B} \in \mathbb{M}_{n}(S)$ then define $\mathbf{A}(\mathbf{B})$ so that

$$
(\mathbf{A}(\mathbf{B}))(i, j)=\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q)(\mathbf{B}(q, j))
$$

Here we go again...

Path Weight

For graph $G=(V, E)$ with $w: E \rightarrow F$
The weight of a path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ is then calculated as

$$
w(p)=w\left(i_{1}, i_{2}\right)\left(w\left(i_{2}, i_{3}\right)\left(\cdots w\left(i_{k-1}, i_{k}\right)\left(\omega_{\oplus}\right) \cdots\right)\right) .
$$

adjacency matrix

$$
\mathbf{A}(i, j)= \begin{cases}w(i, j) & \text { if }(i, j) \in E, \\ \omega & \text { otherwise }\end{cases}
$$

We want to solve equations like these

$$
\mathbf{X}=\mathbf{A}(\mathbf{X}) \boxplus \mathbf{B}
$$

So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings
Suppose (S, \oplus, F) is a monoid of endomorphisms. We can turn it into a semiring

$$
(F, \hat{\oplus}, \circ)
$$

where $(f \hat{\oplus} g)(a)=f(a) \oplus g(a)$
Functions are hard to work with....

- All algorithms need to check equality over elements of semiring,
- $f=g$ means $\forall a \in S: f(a)=g(a)$,
- S can be very large, or infinite.

Lexicographic product of AMEs

$$
\left(S, \oplus_{S}, F\right) \overrightarrow{\times}\left(T, \oplus_{T}, G\right)=\left(S \times T, \oplus_{S} \overrightarrow{\times} \oplus_{T}, F \times G\right)
$$

Theorem ([Sai70, GG07, Gur08])

$$
\mathrm{M}(S \overrightarrow{\times} T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))
$$

Where

Property	Definition
M	$\forall a, b, f: f(a \oplus b)=f(a) \oplus f(b)$
C	$\forall a, b, f: f(a)=f(b) \Longrightarrow a=b$
K	$\forall a, b, f: f(a)=f(b)$

Functional Union of AMEs

$$
(S, \oplus, F)++_{\mathrm{m}}(S, \oplus, G)=(S, \oplus, F+G)
$$

Fact

$$
\mathrm{M}(S+\mathrm{m} T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T)
$$

Where | Property | Definition |
| :--- | :--- |
| M | $\forall a, b, f: f(a \oplus b)=f(a) \oplus f(b)$ |

Left and Right

right

$$
\boldsymbol{\operatorname { r i g h t }}(S, \oplus, F)=(S, \oplus,\{i\})
$$

left

$$
\operatorname{left}(S, \oplus, F)=(S, \oplus, K(S))
$$

where $K(S)$ represents all constant functions over S. For $a \in S$, define the function $\kappa_{a}(b)=a$. Then $K(S)=\left\{\kappa_{a} \mid a \in S\right\}$.

Facts

The following are always true.

```
m(right(S))
m(left(S)) (assuming }\oplus\mathrm{ is idempotent)
c(right(S))
k(left(S))
```


Scoped Product

$$
S \Theta T=(S \overrightarrow{\times} \operatorname{left}(T))+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)
$$

Theorem

$$
\mathrm{M}(S \Theta T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) .
$$

Proof.

$$
\begin{aligned}
& \mathrm{M}(S \Theta T) \\
& \mathrm{M}\left((S \overrightarrow{\times} \operatorname{left}(T))+_{\mathrm{m}}(\boldsymbol{\operatorname { r i g h t }}(S) \overrightarrow{\times} T)\right) \\
\Longleftrightarrow & \mathrm{M}(S \overrightarrow{\times} \operatorname{left}(T)) \wedge \mathrm{M}(\boldsymbol{\operatorname { r i g h t }}(S) \overrightarrow{\times} T) \\
\Longleftrightarrow & \mathrm{M}(S) \wedge \mathrm{M}(\operatorname{left}(T)) \wedge(\mathrm{C}(S) \vee \mathrm{K}(\operatorname{left}(T))) \\
& \wedge \mathrm{M}(\operatorname{right}(S)) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(\operatorname{right}(S)) \vee \mathrm{K}(T)) \\
\Longleftrightarrow & \mathrm{M}(S) \wedge \mathrm{M}(T)
\end{aligned}
$$

Delta Product (OSPF-like?)

$$
S \Delta T=(S \overrightarrow{\times} T)+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)
$$

Theorem

$$
\mathrm{M}(S \Delta T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T)) .
$$

Proof.

m($S \ominus T$)
$\mathrm{m}\left((S \overrightarrow{\times} T)+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)\right)$
$\Longleftrightarrow \mathrm{M}(S \overrightarrow{\times} T) \wedge \mathrm{M}(\boldsymbol{\operatorname { r i g h t }}(S) \overrightarrow{\times} T)$
$\Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(\operatorname{left}(T)) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))$
$\wedge M(\operatorname{right}(S)) \wedge M(T) \wedge(C(\operatorname{right}(S)) \vee K(T))$
$\Longleftrightarrow M(S) \wedge M(T) \wedge(C(S) \vee K(T))$

How do we represent functions?

Definition (transforms (indexed functions))

A set of transforms (S, L, \triangleright) is made up of non-empty sets S and L, and a function

$$
\triangleright \in L \rightarrow(S \rightarrow S) .
$$

We normally write $I \triangleright s$ rather than $\triangleright(I)(s)$. We can think of $I \in L$ as the index for a function $f_{l}(s)=I \triangleright s$, so (S, L, \triangleright) represents the set of function $F=\left\{f_{l} \mid I \in L\right\}$.

Examples

Example 1: Trivial

Let (S, \otimes) be a semigroup.

$$
\operatorname{transform}(S, \oplus)=\left(S, S, \triangleright_{\otimes}\right),
$$

where $a \triangleright_{\otimes} b=a \otimes b$

Example 2: Restriction

For $T \subset S$,

$$
\operatorname{Restrict}(T,(S, \oplus))=\left(S, T, \triangleright_{\otimes}\right) \text {, }
$$

where $a \triangleright_{\otimes} b=a \otimes b$

Example 3 : mildly abstract description of BGP's ASPATHs

Let apaths $(X)=\left(\mathcal{E}\left(\Sigma^{*}\right) \cup\{\infty\}, \Sigma \times \Sigma, \triangleright\right)$ where
$\mathcal{E}\left(\Sigma^{*}\right)=$ finite, elementary sequences over Σ (no repeats)
$(m, n) \triangleright \infty=\infty$
$(m, n) \triangleright I= \begin{cases}n \cdot l & (\text { if } m \notin n \cdot l) \\ \infty & \text { (otherwise) }\end{cases}$

Exercises II

(Complete the routing matrix for the instance of $\mathrm{sp} \overrightarrow{\times}$ oneforall in Lecture 04.
(2) Try to explain why our instance of $\mathrm{sp} \overrightarrow{\times}$ paths (Lecture 05) has a finite routing matrix. Is the semiring 0 -stable?
(3) Prove that uniontimes $(S, \otimes, \overline{1})$ is a semiring.
(9) Show that $(F, \hat{\oplus}, \circ)$ - from Lecture 06 - is a semiring.
(0. Construct two interesting instances of the scoped product (Lecture 07!), each with adjacency and routing matrix.

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
(3) Lecture 06: Beyond Semirings
4. Lecture 07: Advanced Constructions I
(5) Lecture 08: Routing without distribution?

6 Bibliography

Minimal Sets (finite anti-chains)

$\min _{\leq}(A)$

Suppose that (S, \leq) is a pre-ordered set. Let $A \subseteq S$ be finite. Define

$$
\min _{\leq}(A) \equiv\{a \in A \mid \forall b \in A: \neg(b<a)\}
$$

Example 1

$$
\begin{aligned}
(S, \leq) & =\left(2^{\{a, b, c\}}, \subseteq\right) \\
\min _{\subseteq}(\{\{a, b, c\},\{a\}\}) & =\{\{a\}\} \\
\min _{\subseteq}(\{\{a, b, c\},\{a\},\{a, b\},\{b, c\}\}) & =\{\{a\},\{b, c\}\}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
(S, \leq) & =\left(V^{*}, \leq\right) \\
p \leq q & =\text { finite sequences } \\
V^{*} \leq q & \Longleftrightarrow|p| \leq|q| \\
\min _{\leq}(\{(1,3,17),(4,5)\}) & =\{(4,5)\} \\
\min _{\leq}(\{(1,3,17),(4,5),(7,8)\}) & =\{(4,5),(7,8)\}
\end{aligned}
$$

Minimal Sets (continued)

Suppose that (S, \leq) is a pre-ordered set.

$$
\mathcal{P}_{\min }(S, \leq) \equiv\left\{A \subseteq S \mid A \text { is finite and } \min _{\leq}(A)=A\right\}
$$

The minset semigroup construction

$$
\operatorname{minset}(S, \leq)=\left(\mathcal{P}_{\min }^{\leq}(S), \oplus_{\min }^{\leq}\right)
$$

is the semigroup where

$$
A \oplus_{\min }^{\leq} B \equiv \min _{\leq}(A \cup B)
$$

Martelli's semiring ([Mar74, Mar76])

- A cut set $C \subseteq E$ for nodes i and j is a set of edges such there is no path from i to j in the graph $(V, E-C)$.
- C is minimal if no proper subset of C is a cut set.
- Martelli's semiring is such that $\mathbf{A}^{(*)}(i, j)$ is the set of all minimal cut sets for i and j.
- The arc (i, j) is has weight $w(i, j)=\{\{(i, j)\}\}$.
- S is the set of all subsets of the power set of E.
- $X \oplus Y$ is $\{x \cup y \mid x \in X, y \in Y\}$ with any non-minimal sets removed.
- $X \otimes Y$ is $X \cup Y$ with any non-minimal sets removed.

Example

$$
\begin{aligned}
X & =\{\{(2,3\},\{(1,3),(2,4)\}\} \\
Y & =\{\{(1,3),(2,3\},\{(1,3),(2,4)\}\} \\
X \oplus Y & =\{\{(1,3),(2,3\},\{(1,3),(2,4)\}\} \\
X \otimes Y & =\{\{(2,3\},\{(1,3),(2,4)\}\}
\end{aligned}
$$

Martelli

$$
(i, j) \in E \rightarrow w(i, j)=\{\{(i, j)\}\}
$$

Martelli

Martelli

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
\{\phi\} & \{\{(1,2)\}\} & \{\phi\} & \{\{(1,4)\}\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(3,2)\}\} & \{\phi\} & \{\phi\} \\
\{\{(4,1)\}\} & \{\phi\} & \{\{(4,3)\}\} & \{\phi\}
\end{array}\right] \\
& A^{2}=\left[\begin{array}{cc}
\{\{(1,4)\},\{(4,1)\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(1,2),(3,2)\},\{(1,2),(4,3),\{(4,1),(3,2)\},\{(4,1),(4,3)\}\}
\end{array}\right. \\
& A^{3}=A^{\xi}=\left[\begin{array}{cc}
\{\phi\} & \{\{(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\},\{(4,1),(3,2)\},\{(4,1),(4,3)\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{(1,4)\},\{(4,1)\}\} & \{\phi\}
\end{array}\right. \\
& \left.\begin{array}{cc}
\{\{(1,4)\},\{(4,3)\}\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(1,4)\},\{(4,1)\}\}
\end{array}\right] \\
& A^{4}=\left[\begin{array}{cccc}
\{\{(1,4)\},\{(4,1)\}\} & \{\phi\} & \{\{(1,4)\},\{(1,4),(4,3)\}\} & \{\phi\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(4,1)\},\{(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\}\} & \{\phi\} & \{\{(1,4)\},\{(1,4)\}\}
\end{array}\right] \\
& A^{(4)}=\left[\begin{array}{cccc}
\phi & \{\{(1,2),(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\}\} & \{\{(1,4)\},\{(4,3)\}\} & \{\{(1,4)\}\} \\
\{\phi\} & \phi & \{\phi\} & \{\phi\} \\
\{\phi\} & \{(3,2)\} & \phi & \{\phi\} \\
\{\{(4,1)\}\} & \{(1,2),(3,2)\},\{(1,2),(4,3)\},\{(4,1),(3,2)\},\{(4,1),(4,3)\}\} & \{\{(4,3)\}\} & \phi
\end{array}\right] \\
& \{(\{1,4)\},\{(4,1)\}
\end{aligned}
$$

More minset constructions (many details omitted ...)

For semirings

Suppose that $T=(S, \oplus, \otimes)$ is a semiring.

$$
\begin{aligned}
& \operatorname{minsetL}(T) \equiv\left(\mathcal{P}_{\text {min }}^{\leq L}(S), \oplus_{\text {min }}^{\leq L}, \otimes_{\text {min }}^{\leq L}\right) \\
& \operatorname{minsetR}(T) \equiv\left(\mathcal{P}_{\text {min }}^{\leq \mathrm{R}}(S), \oplus_{\text {min }}^{\leq \mathrm{R}}, \otimes_{\text {min }}^{\leq_{\mathrm{R}}^{\prime}}\right)
\end{aligned}
$$

where $a \leq^{\mathrm{L}} b \Longleftrightarrow a=a \oplus b, a \leq^{\mathrm{R}} b \Longleftrightarrow b=a \oplus b$, and
$A \otimes_{\text {min }}^{\leq} B=\min _{\leq}\{a \otimes b \mid a \in A, b \in B\}$.

For ordered semigroups

Suppose that $T=(S, \leq, \otimes)$ is a semiring.

$$
\operatorname{minset}(T) \equiv\left(\mathcal{P}_{\min }^{\leq}(S), \oplus_{\min }^{\leq}, \otimes_{\min }^{\leq}\right)
$$

Yet another minset constructions (many details omitted

 ...)
For "routing algebras"

Suppose that $T=(S, L, \leq, \triangleright \in(L \times S) \rightarrow S)$ a routing algebra in the style of Sobrinho [Sob03, Sob05]. Then

$$
\operatorname{minset}(T) \equiv\left(\mathcal{P}_{\min }^{\leq}(S), L, \oplus_{\min }^{\leq}, \triangleright_{\min }^{\leq}\right)
$$

where $\lambda \triangleright \frac{\leq}{\text { min }} A=\min _{\leq}\{\lambda \triangleright \mid a \in A\}$

Martelli's semiring expressed in a small language?

[NGG09]

$$
\text { martelli }=\operatorname{swap}\left(\operatorname{minset}\left(\operatorname{sg} 2 \operatorname{osr}\left(2^{E}, \cup\right)\right)\right)
$$

where

$$
\begin{aligned}
\operatorname{swap}(S, \oplus, \otimes) & =(S, \otimes, \oplus) \\
\operatorname{sg2osr}(S, \oplus) & =\left(S, \leq \frac{\oplus}{\oplus}, \oplus\right) \\
\operatorname{minset}(S, \leq, \otimes) & =\left(\mathcal{P}_{\min }^{\leq}(S), \oplus_{\min }^{\leq}, \otimes_{\min }^{\leq}\right) \\
\operatorname{minset}(S, \leq) & =\left(\mathcal{P}_{\min }^{\leq}(S), \oplus_{\min }\right)
\end{aligned}
$$

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
(3) Lecture 06: Beyond Semirings
(4) Lecture 07: Advanced Constructions I
(5) Lecture 08: Routing without distribution?

6 Bibliography

Local Optimality

Say that \mathbf{R} is a locally optimal solution when

$$
\mathbf{R}=(\mathbf{A} \otimes \mathbf{R}) \oplus \mathbf{I} .
$$

That is, for $i \neq j$ we have

$$
\mathbf{R}(i, j)=\bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{R}(q, j)=\bigoplus_{q \in N(i)} w(i, q) \otimes \mathbf{R}(q, j)
$$

where $N(i)=\{q \mid(i, q) \in E\}$ is the set of neighbors of i.
In other words, $\mathbf{R}(i, j)$ is the best possible value given the values $\mathbf{R}(q, j)$, for all neighbors q of i.

With Distributivity

A is an adjacency matrix over semiring S.
For Semirings, the following two problems are essentially the same locally optimal solutions are globally optimal solutions.

Global Optimality	Local Optimality
Find \mathbf{R} such that	Find \mathbf{R} such that
$\mathbf{R}(i, j)=\sum_{p \in P(i, j)}^{\oplus} w(p)$	$\mathbf{R}=(\mathbf{A} \otimes \mathbf{R}) \oplus \mathbf{I}$

Prove this!

Without Distributivity

When \otimes does not distribute over \oplus, the following two problems are distinct.

$$
\begin{array}{c|l}
\text { Global Optimality } & \text { Local Optimality } \\
\hline \text { Find } \mathbf{R} \text { such that } & \text { Find } \mathbf{R} \text { such that } \\
\mathbf{R}(i, j)=\sum_{p \in P(i, j)}^{\oplus} w(p) & \mathbf{R}=(\mathbf{A} \otimes \mathbf{R}) \oplus \mathbf{I}
\end{array}
$$

Global Optimality

This has been studied, for example [LT91b, LT91a] in the context of circuit layout. I do not know of any application of this problem to network routing. (Yet!)

Local Optimality

At a very high level, this is the type of problem that BGP attempts to solve!!

Example of local optima for bw $\overrightarrow{\times}$ sp

- Node 1 would prefer the path $1 \rightarrow 3 \rightarrow 4$ with weight $(1,2)$.
- But it is stuck with the best it can get: the path $1 \rightarrow 3 \rightarrow 2 \rightarrow 4$, with weight $(1,11)$.

What are the conditions needed to guarantee existence of local optima?

For a non-distributed structure $S=(S, \oplus, \otimes)$, can be used to find local optima when the following property holds.

Increasing

$$
1: \forall a, b \in S: a \neq \overline{0} \Longrightarrow a<b \otimes a
$$

where $a \leq b$ means $a=a \oplus b$.

Non-decreasing

In order to derive I we often need the non-decreasing property:

$$
\text { ND : } \forall a, b \in S: a \leq b \otimes a
$$

Finding local optima with the iterative method

$$
\begin{aligned}
\mathbf{A}^{[0]}(\mathbf{B}) & =\mathbf{B} \\
\mathbf{A}^{[k+1]}(\mathbf{B}) & =\left(\mathbf{A} \otimes \mathbf{A}^{[k]}(\mathbf{B})\right) \oplus \mathbf{B}
\end{aligned}
$$

Think of the iterative version as a very abstract implementation of "vectoring"....

When distributivity holds we have $A^{(k)} \otimes \mathbf{B}=A^{[k]}(\mathbf{B})$.

Claim

When S is increasing and \oplus is selective and idempotent, then $\mathbf{A}^{[k]}(\mathbf{B})$ converges to a locally optimal solution.

For various flavors of proof see [GG08, kCGG06, Sob03, Sob05]. OPEN PROBLEM : no bounds are yet known!

Outline

(1) Lecture 04: Semiring Examples
(2) Lecture 05: More Semiring constructions
(3) Lecture 06: Beyond Semirings
(4) Lecture 07: Advanced Constructions I
(5) Lecture 08: Routing without distribution?

6 Bibliography

Bibliography I

[GG07] A. J. T. Gurney and T. G. Griffin.
Lexicographic products in metarouting.
In Proc. Inter. Conf. on Network Protocols, October 2007.
[GG08] T. G. Griffin and A. J. T. Gurney.
Increasing bisemigroups and algebraic routing.
In 10th International Conference on Relational Methods in Computer Science (RelMiCS10), April 2008.
[GM08] M. Gondran and M. Minoux.
Graphs, Dioids, and Semirings : New Models and Algorithms.
Springer, 2008.
[Gur08] Alexander Gurney.
Designing routing algebras with meta-languages.
Thesis in progress, 2008.

Bibliography II

[kCGG06] Chi kin Chau, Richard Gibbens, and Timothy G.Griffin. Towards a unified theory of policy-based routing. In Proc. IEEE INFOCOM, April 2006.
[LT91a] T. Lengauer and D. Theune.
Efficient algorithms for path problems with general cost criteria.
Lecture Notes in Computer Science, 510:314-326, 1991.
[LT91b] T. Lengauer and D. Theune.
Unstructured path problems and the making of semirings. Lecture Notes in Computer Science, 519:189-200, 1991.
[Mar74] Alberto Martelli.
An application of regular algebra to the enumeration of cut sets in a graph.
In Information and Processing 74, 1974.

Bibliography III

[Mar76] Alberto Martelli.
A gaussian elimination algorithm for the enumeration of cut sets in a graph.
Journal of the ACM, 23(1):58-73, 1976.
[MS03] J. Monnot and O. Spanjaard.
Bottleneck shortest paths on a partially ordered scale. 4OR, ??(??):225-241, 2003.
[NGG09] V. Naudžiūnas, A. J. T. Gurney, and T. G. Griffin.
Small languages for optimization semirings, 2009.
Work in progress.
[Sai70] Tôru Saitô.
Note on the lexicographic product of ordered semigroups.
Proceedings of the Japan Academy, 46(5):413-416, 1970.

Bibliography IV

[Sob03] Joao Luis Sobrinho.
Network routing with path vector protocols: Theory and applications.
In Proc. ACM SIGCOMM, September 2003.
[Sob05] Joao Luis Sobrinho.
An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking, 13(5):1160-1173, October 2005.

