An Albebraic Approach to Internet Routing Lectures 01, 02, and 03

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

> Michaelmas Term 2009

Outline

- Lecture 01: Routing and Path problems
- Lecture 02: Semigroups and Order theory
- 3 Lecture 03: Semirings I
- Bibliography

(Tentative) Outline

- Lecture 01: Routing and Path problems
- Lecture 02: Semigroups and Order theory
- Lecture 03, 04, 05: Semirings
- Lecture 06: Beyond Semirings
- Lecture 07: Living without distribution?
- Lecture 08: Algorithmics
- Lecture 09 and 10: Advanced Constructions
- Lecture 11: Internet Routing I: OSPF, ISIS, RIP, EIGRP
- Lecture 12: Internet Routing II: route redistribution
- Lecture 13: Internet Routing III: interdomain (BGP)
- Lecture 14 and 15: Metarouting
- Lecture 16: Open questions and discussion

Background

Current Internet routing protocols exhibit several types of anomalies that can reduce network reliability and increase operational costs.

A very incomplete list of problems:

- BGP No convergence guarantees [KRE00, GR01, MGWR02], wedgies [GH05]. Excessive table growth in backbone (see current work on Locator/ID separation in the RRG, for example [FFML09]).
- IGPs The lack of options has resulted in some large networks using BGP as an IGP (see Chapter 5 of [ZB03] and Chapter 3 of [WMS05]).
- RR and AD Recent work has illustrated some pitfalls of Route Redistribution (RR) and Administrative Distance (AD) [LXZ07, LXP+08, LXZ08].

We will return to these issues later in the term.

How did we get here?

- Internet protocols have evolved in a culture of 'rough consensus and running code' — pivotal to the success of the Internet due to the emphasis on interoperability.
- This has worked fairly well for data-transport and application-oriented protocols (IPv4, TCP, FTP, DNS, HTTP, ...)
- Then why are routing protocols so broken?

Why are routing protocols so broken?

- Routing protocols tend not to run on a user's end system, but rather on specialized devices (routers) buried deep within a network's infrastructure.
- The router market has been dominated by a few large companies

 an environment that encourages proprietary extensions and the development of *de facto* standards.
- The expedient hack usually wins.
- And finally, let's face it routing is hard to get right.

What is to be done?

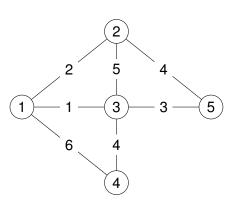
Central Thesis

The culture of the Internet has confounded two things that should be clearly distinguished — what problem is being solved and how it is being solved algorithmically.

Your challenge

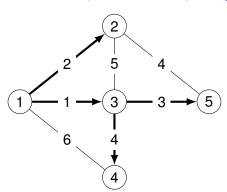
- Think of yourself broadly as a <u>Computer Scientist</u>, not narrowly as a "networking person" ...
- Remember that the Internet did not come out of the established networking community! (See John Day's wonderful book [Day08].)
 Why do we think the next generation network will??
- Routing research should be about more than just understanding the accidental complexity associated with artifacts pooped out by vendors.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



The adjacency matrix

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

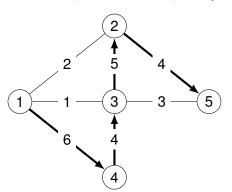
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{p \in P(i, j)} w(p),$$

where P(i, j) is the set of all paths from i to j.

Widest paths example, (\mathbb{N}^{∞} , max, min)



Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix

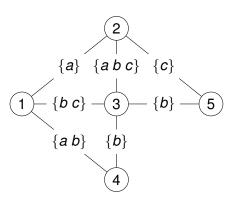
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

Strange example, $(2^{\{a, b, c\}}, \cup, \cap)$



We want a Matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcup_{p \in P(i, j)} w(p).$$

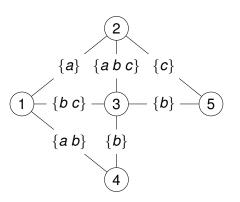
where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

Strange example, $(2^{\{a, b, c\}}, \cup, \cap)$

The matrix R

Another strange example, $(2^{\{a, b, c\}}, \cap, \cup)$



We want matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcap_{p \in P(i, j)} w(p).$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

Another strange example, $(2^{\{a, b, c\}}, \cap, \cup)$

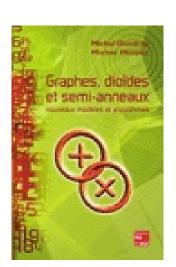
These structures are examples of Semirings

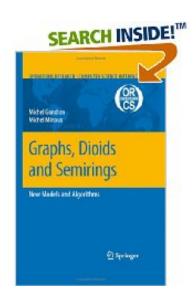
See [Car79, GIVI84, GIVI08]							
name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use	
sp	\mathbb{N}_{∞}	min	+	∞	0	minimum-weight routing	
bw	\mathbb{N}_{∞}	max	min	0	∞	greatest-capacity routing	
rel	[0, 1]	max	×	0	1	most-reliable routing	
use	$\{0, 1\}$	max	min	0	1	usable-path routing	
	2^W	\cup	\cap	{}	W	shared link attributes?	
	2^W	\cap	\cup	W	{}	shared path attributes?	

A wee bit of notation!						
Symbol	Interpretation					
\mathbb{N}	Natural numbers (starting with zero)					
\mathbb{N}_{∞}	Natural numbers, plus infinity					
$\overline{0}$	Identity for ⊕					
1	Identity for ⊗					
	the state of the s					

Coo [Cor70 CM04 CM00]

Recomended Reading





Outline

- Lecture 01: Routing and Path problems
- 2 Lecture 02: Semigroups and Order theory
- 3 Lecture 03: Semirings I
- Bibliography

Semigroups

Definition (Semigroup)

A semigroup (S, \oplus) is a non-empty set S with a binary operation such that

ASSOCIATIVE :
$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

S	\oplus	where
\mathbb{N}_{∞}	min	
\mathbb{N}_{∞}	max	
\mathbb{N}_{∞}	+	
2^W	U	
2^W	\cap	
\mathcal{S}^*	0	$(abc \circ de = abcde)$
S	left	(a left b = a)
S	right	(a right b = b)

Special Elements

Definition

• $\alpha \in S$ is an identity if for all $a \in S$

$$\mathbf{a} = \alpha \oplus \mathbf{a} = \mathbf{a} \oplus \alpha$$

- A semigroup is a monoid if it has an identity.
- ω is an annihilator if for all $a \in S$

$$\omega = \omega \oplus \mathbf{a} = \mathbf{a} \oplus \omega$$

S	\oplus	α	ω
\mathbb{N}_{∞}	min	∞	0
\mathbb{N}_{∞}	max	0	∞
\mathbb{N}_{∞}	+	0	∞
2^W	U	{}	W
2^W	\cap	W	{}
\mathcal{S}^*	0	ϵ	
S	left		
S	right		

Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : $a \oplus b = b \oplus a$ SELECTIVE : $a \oplus b \in \{a, b\}$ IDEMPOTENT : $a \oplus a = a$

S	\oplus	COMMUTATIVE	SELECTIVE	IDEMPOTENT
\mathbb{N}_{∞}	min	*	*	*
\mathbb{N}_{∞}	max	*	*	*
\mathbb{N}_{∞}	+	*		
2 ^W	U	*		*
2 ^W	\cap	*		*
\mathcal{S}^*	0			
S	left		*	*
S	right		*	*

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

REFLEXIVE : $a \le a$

TRANSITIVE : $a \le b \land b \le c \rightarrow a \le c$

ANTISYMMETRIC : $a \le b \land b \le a \rightarrow a = b$

TOTAL : $a \le b \lor b \le a$

	pre-order	partial order	preference order	total order
REFLEXIVE	*	*	*	*
TRANSITIVE	*	*	*	*
ANTISYMMETRIC		*		*
TOTAL			*	*

Canonical Pre-order of a Commutative Semigroup

Suppose \oplus is commutative.

Definition (Canonical pre-orders)

$$a \leq_{\oplus}^{R} b \equiv \exists c \in S : b = a \oplus c$$

 $a \leq_{\oplus}^{L} b \equiv \exists c \in S : a = b \oplus c$

Lemma (Sanity check)

Associativity of \oplus implies that these relations are transitive.

Proof.

Note that $a \leq_{\oplus}^R b$ means $\exists c_1 \in S : b = a \oplus c_1$, and $b \leq_{\oplus}^R c$ means

An Albebraic Approach to Internet Routing Le

 $\exists c_2 \in \mathcal{S} : c = b \oplus c_2$. Letting c_3 = we have

 $c = b \oplus c_2 = (a \oplus c_1) \oplus c_2 = a \oplus (c_1 \oplus c_2) = a \oplus c_3$. That is,

 $\exists c_3/inS : c = a \oplus c_3$, so $a \leq_{\oplus}^R c$. The proof for \leq_{\oplus}^L is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \oplus) is canonically ordered when $a \preceq_{\oplus}^R c$ and $a \preceq_{\oplus}^L c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1} = a^{-1} \oplus a = \alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If
$$a, b \in S$$
, then $a = \alpha_{\oplus} \oplus a = (b \oplus b^{-1}) \oplus a = b \oplus (b^{-1} \oplus a) = b \oplus c$, for $c = b^{-1} \oplus a$, so $a \leq_{\oplus}^{L} b$. In a similar way, $b \leq_{\oplus}^{R} a$. Therefore $a = b$.

Natural Orders

Definition (Natural orders)

Let (S, \oplus) be a simigroup.

$$a \leq_{\oplus}^{L} b \equiv a = a \oplus b$$

 $a \leq_{\oplus}^{R} b \equiv b = a \oplus b$

Lemma

If \oplus is commutative and idempotent, then $a \leq_{\oplus}^{D} b \iff a \leq_{\oplus}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$\begin{array}{cccc} a \unlhd^R_{\oplus} b & \Longleftrightarrow & b = a \oplus c = (a \oplus a) \oplus c = a \oplus (a \oplus c) \\ & = & a \oplus b & \Longleftrightarrow & a \leq^R_{\oplus} b \\ a \unlhd^L_{\oplus} b & \Longleftrightarrow & a = b \oplus c = (b \oplus b) \oplus c = b \oplus (b \oplus c) \\ & = & b \oplus a = a \oplus b & \Longleftrightarrow & a \leq^L_{\oplus} b \end{array}$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\oplus}^{L} \alpha$ and $\alpha \leq_{\oplus}^{R}$
- If ω exists, then for all $a, \omega \leq_{\oplus}^{L} a$ and $a \leq_{\oplus}^{R} \omega$
- If α and ω exist, then S is bounded.

$$\begin{array}{cccc} \omega & \leq^{L}_{\oplus} & \mathbf{a} & \leq^{L}_{\oplus} & \alpha \\ \alpha & \leq^{R}_{\oplus} & \mathbf{a} & \leq^{R}_{\oplus} & \omega \end{array}$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{cccc}
0 & \leq_{\min}^{L} & a & \leq_{\min}^{L} & \infty \\
\infty & \leq_{\min}^{R} & a & \leq_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\oplus	α	ω	$\leq^{\mathrm{L}}_{\oplus}$	$\leq^{\mathbf{R}}_{\oplus}$
$\mathbb{N} \cup \{\infty\}$	min	∞	0	\leq	\geq
$\mathbb{N} \cup \{\infty\}$	max	0	∞	\geq	\leq
$\mathcal{P}(W)$	U	{}	W	\supseteq	\subseteq
$\mathcal{P}(W)$	\cap	W	{}	\subseteq	⊇

Property Management

Lemma

Let $D \in \{R, L\}$.

- $lackbox{2}$ COMMUTATIVE $((S,\,\oplus)) \implies$ ANTISYMMETRIC $((S,\,\leq^D_\oplus))$
- $lackbox{0}$ SELECTIVE $((S, \oplus)) \iff \mathsf{TOTAL}((S, \leq^D_\oplus))$

Proof.

Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))

Suppose S is commutative idempotent semigroup and T be a monoid. The lexicographic product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \oplus)$, where $\vec{\oplus} = \oplus_S \times \oplus_T$ is defined as

$$(s_1,t_1) \vec{\oplus} (s_2,t_2) = egin{cases} (s_1 \oplus_S s_2, t_1 \oplus_T t_2) & s_1 = s_1 \oplus_S s_2 = s_2 \ (s_1 \oplus_S s_2, t_1) & s_1 = s_1 \oplus_S s_2
eq s_2 \ (s_1 \oplus_S s_2, t_2) & s_1
eq s_1 \oplus_S s_2
eq s_2 \ (s_1 \oplus_S s_2, \overline{0}_T) & ext{otherwise.} \end{cases}$$

Direct Product of Semigroups

Let (S, \oplus_S) and (T, \oplus_T) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \oplus)$, where $\oplus = \oplus_S \times \oplus_T$ is defined as

$$(s_1, t_1) \oplus (s_2, t_2) = (s_1 \oplus_S s_2, t_1 \oplus_T t_2).$$

Outline

- Lecture 01: Routing and Path problems
- Lecture 02: Semigroups and Order theory
- 3 Lecture 03: Semirings I
- Bibliography

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- $(S, \oplus, \overline{0})$ is a commutative monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

and distributivity holds,

LD :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

RD : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The *weight* of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$w(p)=w(i_1,\ i_2)\otimes w(i_2,\ i_3)\otimes \cdots \otimes w(i_{k-1},\ i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

The general problem of finding globally optimal paths

Given an adjacency matrix **A**, find **R** such that for all $i, j \in V$

$$\mathbf{R}(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

How can we solve this problem?

Lift semiring to matrices

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

\oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

 $(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus_{1 < q < n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

$\mathbb{M}_n(S)$ is a semiring!

Check (left) distribution

$$\mathbf{A}\otimes(\mathbf{B}\oplus\mathbf{C})=(\mathbf{A}\otimes\mathbf{B})\oplus(\mathbf{A}\otimes\mathbf{C})$$

$$(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j))$$

$$= \bigoplus_{1 \leq q \leq n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

Powers and closure

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Powers, ak

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a q such that $a^{(q)}=a^{(q+1)}$, then a is q-stable. Therefore, $a^*=a^{(q)}$, assuming \oplus is idempotent.

Fact 1

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

On the matrix semiring

Matrix powers, \mathbf{A}^k

$$\mathbf{A}^0 = \mathbf{I}$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist (sum may not converge)

Fact 2

If *S* is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Computing optimal paths

- Let P(i,j) be the set of paths from i to j.
- Let $P^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

(1)
$$\mathbf{A}^{k}(i,j) = \bigoplus_{i=1}^{m} w(p)$$

(2)
$$\mathbf{A}^{(k+1)}(i,j) = \bigoplus_{p \in P^k(i,j)} w(p)$$

(3)
$$\mathbf{A}^{(*)}(i,j) = \bigoplus_{p \in P(i,j)}^{p \in P(k)} w(p)$$

Proof of (1)

By induction on k. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = w(\epsilon)$$
.

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i,j)$$

$$= \bigoplus_{\substack{1 \le q \le n \\ 1 \le q \le n}} \mathbf{A}(i,q) \otimes \mathbf{A}^k(q,j)$$

$$= \bigoplus_{\substack{1 \le q \le n \\ 1 \le q \le n}} \mathbf{A}(i,q) \otimes (\bigoplus_{\substack{p \in P^k(q,j) \\ p \in P^k(q,j)}} w(p))$$

$$= \bigoplus_{\substack{(i,q) \in E \\ p \in P^k(q,j)}} \mathbf{A}(i,q) \otimes w(p)$$

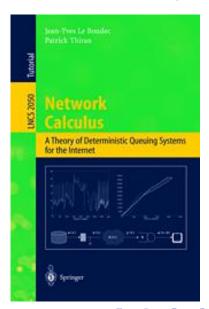
$$= \bigoplus_{\substack{(i,q) \in E \\ p \in P^k(q,j)}} w(i,q) \otimes w(p)$$

Semirings have other applications in Networking

Network calculus [BT01]. For analyzing performance guarantees in networks. Traffic flows are subject to constraints imposed by the system components:

- link capacity
- traffic shapers (leaky buckets)
- congestion control
- background traffic

Algebraic means of expressing and analyzing these constraints starts with the min-plus semiring.



Lexicographic Semiring

$$(S, \oplus_{S}, \otimes_{S}) \vec{\times} (T, \oplus_{T}, \otimes_{T}) = (S \times T, \oplus_{S} \vec{\times} \oplus_{T}, \otimes_{S} \times \otimes_{T})$$

Theorem ([Sai70, GG07, Gur08])

$$LD(S \times T) \iff LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$$

Where	
Property	Definition
LD	$\forall a,b,c:c\otimes(a\oplus b)=(c\otimes a)\oplus(c\otimes b)$
LC	$\forall a, b, c : c \otimes a = c \otimes b \implies a = b$
LK	$\forall a, b, c : c \otimes a = c \otimes b$

Return to examples

So we have

$$LD(sp \times bw)$$

and

$$\neg(\texttt{LD}(bw \stackrel{\vec{\times}}{\times} sp))$$

Exercise I

- Show that $(S, \oplus_S) \times (T, \oplus_T)$ is associative.
- What are the natural orders associated with this construction?
 Explore.
- Prove Fact 1.
- Prove Fact 2.
- Finish the proof that $M_n(S)$ is a semiring.

Outline

- Lecture 01: Routing and Path problems
- 2 Lecture 02: Semigroups and Order theory
- 3 Lecture 03: Semirings I
- Bibliography

Bibliography I

[BT01] J.-Y. Le Boudec and P. Thiran.

Network Calculus: A Theory of Deterministic Queuing

Systems for the Internet.

Springer, 2001.

[Car79] Bernard Carré.

Graphs and Networks.

Oxford University Press, 1979.

[Day08] John Day.

Patterns in Network Architectures : A return to

fundamentals.

Prentice Hall, 2008.

Bibliography II

[FFML09] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID separation protocol (LISP).

draft-ietf-lisp-02.txt, 2009.

Work In Progress.

[GG07] A. J. T. Gurney and T. G. Griffin.

Lexicographic products in metarouting.

In Proc. Inter. Conf. on Network Protocols, October 2007.

[GH05] Timothy G. Griffin and Geoff Huston.

RFC 4264: BGP Wedgies, November 2005.

IETF.

[GM84] M. Gondran and M. Minoux.

Graphs and Algorithms.

Wiley, 1984.

Bibliography III

[GM08] M. Gondran and M. Minoux.

Graphs, Dioids, and Semirings: New Models and Algorithms.

Springer, 2008.

[GR01] Lixin Gao and Jennifer Rexford.

Stable internet routing without global coordination.

IEEE/ACM Transactions on Networking, pages 681–692,

December 2001.

[Gur08] Alexander Gurney.

Designing routing algebras with meta-languages.

Thesis in progress, 2008.

[KRE00] K. Varadhan, R. Govindan, and D Estrin.

Persistent route oscillations in inter-domain routing.

Computer Networks, 32:1-16, 2000.

Bibliography IV

[LXP+08] Franck Le, Geoffrey Xie, Dan Pei, Jia Wang, and Hui Zhang.

Shedding light on the glue logic of the internet routing architecture.

In Proc. ACM SIGCOMM, 2008.

[LXZ07] Franck Le, Geoffrey Xie, and Hui Zhang.
Understanding route redistribution.
In Proc. Inter. Conf. on Network Protocols, 2007.

[LXZ08] Franck Le, Geoffrey Xie, and Hui Zhang. Instability free routing: Beyond one protocol instance. In *Proc. ACM CoNext*, December 2008.

[MGWR02] D. McPherson, V. Gill, D. Walton, and A. Retana. RFC3345: Border gateway protocol (BGP) persistent route oscillation condition, 2002.

Bibliography V

[Sai70] Tôru Saitô.

Note on the lexicographic product of ordered semigroups. *Proceedings of the Japan Academy*, 46(5):413–416, 1970.

[WMS05] Russ White, Danny McPherson, and Srihari Sangli.

Practical BGP.

Addison Wesley, 2005.

[ZB03] Randy Zhang and Micah Bartell.

BGP Design and Implementation.

Cisco Press, 2003.