
� Topic III �
LISP : functions� recursion� and lists

References:

� Chapter 3 of Concepts in programming languages by

J. C.Mitchell. CUP, 2003.

� Chapters 5(§4.5) and 13(§1) of Programming languages:

Design and implementation (3RD EDITION) by T.W.Pratt

and M.V. Zelkowitz. Prentice Hall, 1999.

� 49

� J.McCarthy. Recursive functions of symbolic expressions

and their computation by machine. Communications of

the ACM, 3(4):184–195, 1960.�

� J.McCarthy. History of LISP. In History of Programming

Languages. Academic Press, 1981.

�Available on-line from <http://www-formal.stanford.edu/jmc/

recursive.html>.

� 50

LISP = LISt Processing
(�1960)

� Developed in the late 1950s and early 1960s by a team

led by John McCarthy in MIT.

� McCarthy described LISP as a “a scheme for representing

the partial recursive functions of a certain class of

symbolic expressions”.

� Motivating problems: Symbolic computation (symbolic

differentiation), logic (Advice taker), experimental

programming.

� Software embedding LISP: Emacs (text editor),

GTK (linux graphical toolkit), Sawfish (window manager),

GnuCash (accounting software).

� 51

�� ��

�� ��Programming-language phrases

� Expressions. A syntactic entity that may be evaluated to

determine its value.

� Statement. A command that alters the state of the

machine in some explicit way.

� Declaration. A syntactic entity that introduces a new

identifier, often specifying one or more attributes.

� 52

Innovation in the design of LISP

� LISP is an expression-based language.

Conditional expressions that produce a value were

new in LISP.

� Pure LISP has no statements and no expressions

with side effects. However, LISP also supports

impure constructs.

� 53

Some contributions of LISP

� Lists.

� Recursive functions.

� Garbage collection.

� Programs as data.

� 54

Overview

� LISP syntax is extremely simple. To make parsing easy, all

operations are written in prefix form (i.e., with the operator

in front of all the operands).

� LISP programs compute with atoms and cells.

� The basic data structures of LISP are dotted pairs, which

are pairs written with a dot between the components.

Putting atoms or pairs together, one can write symbolic

expressions in a form traditionally called S-expressions.

Most LISP programs use lists built out of S-expressions.

� LISP is an untyped programming language.

� 55

� Most operations in LISP take list arguments and return list

values.

Example:

(cons ’(a b c) ’(d e f)) cons-cell representation

Remark: The function (quote x), or simply ’x, just

returns the literal value of its argument.

� 56

? How does one recognise a LISP program?

(defvar x 1) val x = 1 ;

(defun g(z) (+ x z)) fun g(z) = x + z ;

(defun f(y) fun f(y)

(+ (g y) = g(y) +

(let let

((x y)) val x = y

(in

g x) g(x)

))) end ;

(f (+ x 1)) f(x+1) ;

! It is full of parentheses!

� 57

Historically, LISP was a dynamically scoped language . . .

(defvar x T)

(defun test(y) (eq x y))

(cond

(x (let ((z 0)) (test z)))

)

vs.
(defvar x T)

(defun test(y) (eq x y))

(cond

(x (let ((x 0)) (test x)))

)

. . . when Scheme was introduced in 1978, it was a statically

scoped variant of LISP.

� 58

�� ��

�� ��Static and dynamic scope

Static scope rules relate references with declarations of names

in the program text; dynamic scope rules relate references

with associations for names during program execution.

There are two main rules for finding the declaration of a global

identifier:

� Static scope. A global identifier refers to the identifier with

that name that is declared in the closest enclosing scope

of the program text.

� Dynamic scope. A global identifier refers to the identifier

associated with the most recent environment.

� 59

�� ��

�� ��Renaming of local variables

Lexical scope is deeply related to renaming of variables. It

should not matter whether a program uses one name or

another one for a local variable. Let us state this supposition

as a principle:

Consistent renaming of local names in the source text

has no effect on the computation set up by a program.

This renaming principle motivates static scope because a

language that obeys the renaming principle uses lexical

scope. The reason is that the renaming principle can be

applied to rename local variables until each name has only

one declaration in the entire program. This one declaration is

the one obtained under lexical scope.

� 60

�� ��

�� ��The importance of static scope

Static scope rules play an important part in the design and

implementation of most programming languages.

� Static scope rules allow many different sorts of

connections to be established between references to

names and their declarations during translation.

For instance, relating a variable name to a declaration for

the variable and relating a constant name to a declaration

for the constant.

Other connections include relating names to type

declarations, relating formal parameters to formal

� 61

parameter specifications, relating subprogram calls to

subprogram declarations, and relating statement labels

referenced in goto statements to labels on particular

statements.

In each of these cases, a different set of simplications may

be made during translation that make execution of the

program more efficient.

� Static scope rules are also important for the programmer

in reading a program because they make it possible to

relate a name referenced in a program to a declaration for

the name without tracing the course of program execution.

� 62

�� ��
�� ��Abstract machines

The terminology abstract machine is generally used to refer to

an idealised computing device that can execute a specific

programming language directly.

Typically an abstract machine may not be fully implementable.

However, an abstract machine should be sufficiently realistic

to provide useful information about the real execution of

programs.

An important goal in discussing abstract machines is to

identify the mental model of the computer that a programmer

uses to write and debug programs.

� 63

LISP abstract machine

The abstract machine for Pure LISP has four parts:

1. A LISP expression to be evaluated.

2. A continuation, which is a function representing the

remaining of the program to evaluate when done with

the current expression.

3. An association list, also know as the A-list.

The purpose of the A-list is to store the values of variables

that may occur either in the current expression to be

evaluated or in the remaining expressions in the program.

4. A heap, which is a set of cons cells (or dotted pairs) that

might be pointed to by pointers in the A-list.

� 64

Recursion
McCarthy (1960)

(defun subst (x y z)

(cond

((atom z) (cond ((eq z y) x) (T z)))

(T (cons (subst x y (car z)) (subst x y (cdr z))))

)

)

In general . . . , the routine for a recursive function uses itself as a

subroutine. For example, the program for subst x y z uses itself as

a subroutine to evaluate the result of substituting into the

subexpression car z and cdr z. While subst x y (cdr z) is being

evaluated, the result of the previous evaluation of

subst x y (car z) must be saved in a temporary storage register.

However, subst may need the same register for evaluating

� 65

subst x y (cdr z). This possible conflict is resolved by the SAVE

and UNSAVE routines that use the public push-down list�. The

SAVE routine has an index that tells it how many registers in the

push-down list are already in use. It moves the contents of the

registers which are to be saved to the first unused registers in the

push-down list, advances the index of the list, and returns to the

program form which control came. This program may then freely use

these registers for temporary storage. Before the routine exits it

uses UNSAVE, which restores the contents of the temporary

registers from the push-down list and moves back the index of this

list. The result of these conventions is described, in programming

terminology, by saying that the recursive subroutine is transparent to

the temporary storage registers.

�1995: now called a stack

� 66

Garbage collection
McCarthy (1960)

. . .When a free register is wanted, and there is none

left on the free-storage list, a reclamation� cycle starts.

———
� We already called this process “garbage collection”,

but I guess that I chickened out of using it in the

paper—or else the Research Laboratory of

Electronics grammar ladies wouldn’t let me.

� 67

�� ��

�� ��Garbage collection

In computing, garbage refers to memory locations that are not

accessible to a program.

At a given point in the execution of a program P, a

memory location � is garbage if no completed

execution of P from this point can access location �. In

other words, replacing the contents of � or making this

location inaccessible to P cannot affect any further

execution of the program.

Garbage collection is the process of detecting garbage during

the execution of a program and making it available.

� 68

Programs as data

� LISP data and LISP program have the same syntax and

internal representation. This allows data structures to be

executed as programs and programs to be modified as

data.

� One feature that sets LISP apart from many other

languages is that it is possible for a program to build a

data structure that represents an expression and then

evaluates the expression as if it were written as part of

the program. This is done with the function eval.

� 69

�� ��
�� ��Reflection

A language mechanism is said to be reflective if it allows to

reason about its own structure.

A language is said to be fully reflective if it allows a program

to reason about all aspects of its current structure and state.

Fully reflective languages are still just research prototypes

(e.g. Maude), but limited forms of reflection appear in several

languages (e.g. LISP, Prolog, Python).

� 70

Parameter passing in LISP

The actual parameters in a function call are always

expressions, represented as lists structures.

LISP provides two main methods of parameter passing:

� Pass/Call-by-value. The most common method is to

evaluate the expressions in the actual-parameter list, and

pass the resulting values.

� Pass/Call-by-name.� A less common method is to transmit

the expression in the actual parameter list unevaluated,

and let the call function evaluate them as needed using

eval.

The programmer may specify transmission by name using

nlambda in place of lambda in the function definition.

� 71

Strict and lazy evaluation

Example: Consider the following function definitions with

parameter-passing by value.

(defun CountFrom(n) (CountFrom(+ n 1)))

(defun FunnyOr(x y)

(cond (x 1) (T y))

)

(defun FunnyOrelse(x y)

(cond ((eval x) 1) (T (eval y)))

)

� 72

? What happens in the following calls?

(FunnyOr T (CountFrom 0))

(FunnyOr nil T)

(FunnyOrelse ’T ’(CountFrom 0))

(FunnyOrelse ’nil ’T)

� 73

