co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

 $L = \{x \mid \forall y \mid y \mid < p(|x|) \to R'(x, y)\}$

 NP – the collection of languages with succinct certificates of membership.

co-NP – the collection of languages with succinct certificates of disqualification.

```
Anuj Dawar
```

May 14, 2010

4

NP P Co-NP

Complexity Theory

Lecture 9

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2010

http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Any of the situations is consistent with our present state of knowledge:

- P = NP = co-NP
- $P = NP \cap co-NP \neq NP \neq co-NP$
- $P \neq NP \cap co-NP = NP = co-NP$
- $P \neq NP \cap co-NP \neq NP \neq co-NP$

Complexity Theory

co-NP-complete

VAL – the collection of Boolean expressions that are *valid* is *co-NP-complete*.

Any language L that is the complement of an NP-complete language is *co-NP-complete*.

Any reduction of a language L_1 to L_2 is also a reduction of $\overline{L_1}$ -the complement of L_1 -to $\overline{L_2}$ -the complement of L_2 .

There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

 $\mathsf{VAL} \in \mathsf{P} \Rightarrow \mathsf{P} = \mathsf{NP} = \mathsf{co-NP}$

 $\mathsf{VAL} \in \mathsf{NP} \Rightarrow \mathsf{NP} = \mathsf{co-NP}$

Anuj Dawar

Complexity Theory

May 14, 2010

3

Prime Numbers

Consider the decision problem **PRIME**:

Given a number x, is it prime?

This problem is in co-NP.

 $\forall y(y < x \to (y = 1 \lor \neg(\operatorname{div}(y, x))))$

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.

Anuj Dawar

Complexity Theory

7

May 14, 2010

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

 $(x-a)^p \equiv (x^p-a) \pmod{p}$

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the equivalence is checked *modulo* a polynomial $x^r - 1$, for "suitable" r.

The existence of suitable small r relies on deep results in number theory.

Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct certificates of primality based on:

A number p > 2 is *prime* if, and only if, there is a number r, 1 < r < p, such that $r^{p-1} = 1 \mod p$ and $r^{\frac{p-1}{q}} \neq 1 \mod p$ for all *prime divisors* q of p-1.

Anuj Dawar

May 14, 2010

8

Complexity Theory

Factors

Consider the language Factor

 $\{(x,k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\}$

$\mathsf{Factor} \in \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP}$

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of x.

6

The Travelling Salesman Problem was originally conceived of as an optimisation problem

to find a minimum cost tour.

We forced it into the mould of a decision problem -TSP – in order to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.

Anuj Dawar

May 14, 2010

11

Complexity Theory

Function Problems

Still, there is something interesting to be said for *function problems* arising from NP problems.

Suppose

$L = \{x \mid \exists y R(x, y)\}$

where R is a polynomially-balanced, polynomial time decidable relation.

A witness function for L is any function f such that:

- if $x \in L$, then f(x) = y for some y such that R(x, y);
- f(x) = "no" otherwise.

The class FNP is the collection of all witness functions for languages in NP.

This is still reasonable, as we are establishing the *difficulty* of the problems.

A polynomial time solution to the optimisation version would give a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a polynomial time algorithm for *finding the optimal value*, using binary search, if necessary.

Complexity Theory

Anuj Dawar

FNP and FP

A function which, for any given Boolean expression ϕ , gives a satisfying truth assignment if ϕ is satisfiable, and returns "no" otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time, then P = NP.

If P = NP, then for every language in NP, some witness function is computable in polynomial time, by a binary search algorithm.

P = NP if, and only if, FNP = FP

Under a suitable definition of reduction, the witness functions for SAT are FNP-complete.

May 14, 2010

12

Factorisation

The *factorisation* function maps a number n to its prime factorisation:

 $2^{k_1}3^{k_2}\cdots p_m^{k_m}.$

This function is in **FNP**.

The corresponding decision problem (for which it is a witness function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in polynomial time.

Anuj Dawar

May 14, 2010