Complexity Theory
Lecture 7

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2010

http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Anuj Dawar

Anuj Dawar

May 10, 2010

3

1

Complexity Theory

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Complexity Theory

Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph G = (V, E), a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.

A graph is called *Hamiltonian* if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Anuj Dawar

May 10, 2010

4

Complexity Theory

Travelling Salesman

Recall the travelling salesman problem $\,$

Given

Anuj Dawar

- V a set of nodes.
- $c: V \times V \to \mathbb{N}$ a cost matrix.

Find an ordering v_1, \ldots, v_n of V for which the total cost:

$$c(v_n, v_1) + \sum_{i=1}^{n-1} c(v_i, v_{i+1})$$

is the smallest possible.

May 10, 2010

May 10, 2010

Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

$$(V, c: V \times V \to \mathbb{N}, t)$$

such that there is a tour of the set of vertices V, which under the cost matrix c, has cost t or less.

Anuj Dawar

Anuj Dawar

May 10, 2010

7

5

Complexity Theory

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally hundreds of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose significance lies in that they have been used to prove a large number of other problems NP-complete, through reductions.

Complexity Theory

Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V, E) to the triple $(V, c: V \times V \to \mathbb{N}, n)$, where

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2 & \text{otherwise} \end{cases}$$

and n is the size of V.

Anuj Dawar

Anuj Dawar

May 10, 2010

Complexity Theory

3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets $X,\,Y$ and Z, and a set of triples

 $M \subseteq X \times Y \times Z$, does M contain a matching?

I.e. is there a subset $M' \subseteq M$, such that each element of X, Y and Z appears in exactly one triple of M'?

We can show that 3DM is NP-complete by a reduction from 3SAT.

May 10, 2010

May 10, 2010

Reduction

If a Boolean expression ϕ in 3CNF has n variables, and m clauses, we construct for each variable v the following gadget.

Anuj Dawar

May 10, 2010

11

Complexity Theory

Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub collection containing exactly n of these sets whose union is all of U?

The reduction from 3DM simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

Complexity Theory

In addition, for every clause c, we have two elements x_c and y_c .

If the literal v occurs in c, we include the triple

$$(x_c, y_c, z_{vc})$$

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

$$(x_c, y_c, \bar{z}_{vc})$$

in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.

Anuj Dawar

Anuj Dawar

May 10, 2010

12

Complexity Theory

Set Covering

More generally, we have the *Set Covering* problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?

Anuj Dawar

May 10, 2010

May 10, 2010

13

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

Anuj Dawar

May 10, 2010

Complexity Theory

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, ..., 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1, ..., S_m\}$.

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_i , and having weight and value

$$\sum_{j \in S_i} (m+1)^{j-1}$$

and set the target weight and value both to

$$\sum_{j=0}^{3n-1} (m+1)^j$$

Anuj Dawar May 10, 2010