Complexity Theory

Lecture 7

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2010
http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Hamiltonian Graphs

Recall the definition of HAM - the language of Hamiltonian graphs.

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM
Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Travelling Salesman

Recall the travelling salesman problem

Given

- V - a set of nodes
- $c: V \times V \rightarrow \mathbb{N}-$ a cost matrix.

Find an ordering v_{1}, \ldots, v_{n} of V for which the total cost:

$$
c\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)
$$

is the smallest possible.

Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

$$
(V, c: V \times V \rightarrow \mathbb{N}, t)
$$

such that there is a tour of the set of vertices V, which under the cost matrix c, has cost t or less

Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V, E) to the triple $(V, c: V \times V \rightarrow \mathbb{N}, n)$, where

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { otherwise }\end{cases}
$$

and n is the size of V.

3D Matching

The decision problem of $3 D$ Matching is defined as:
Given three disjoint sets X, Y and Z, and a set of triples $M \subseteq X \times Y \times Z$, does M contain a matching?
I.e. is there a subset $M^{\prime} \subseteq M$, such that each element of X, Y and Z appears in exactly one triple of M^{\prime} ?

We can show that 3DM is NP-complete by a reduction from 3SAT.

Reduction

If a Boolean expression ϕ in 3CNF has n variables, and m clauses, we construct for each variable v the following gadget.

in M.
Finally, we include extra dummy elements in X and Y to make the numbers match up.

Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:
Given a set U with $3 n$ elements, and a collection $S=\left\{S_{1}, \ldots, S_{m}\right\}$ of three-element subsets of U, is there a sub collection containing exactly n of these sets whose union is all of U ?

The reduction from 3DM simply takes $U=X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

In addition, for every clause c, we have two elements x_{c} and y_{c}
If the literal v occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, z_{v c}\right)
$$

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, \bar{z}_{v c}\right)
$$

Set Covering

More generally, we have the Set Covering problem:
Given a set U, a collection of $S=\left\{S_{1}, \ldots, S_{m}\right\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U ?

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete

In the problem, we are given n items, each with a positive integer value v_{i} and weight w_{i}.

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V ?

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U=\{1, \ldots, 3 n\}$ and a collection of 3-element subsets of $U, S=\left\{S_{1}, \ldots, S_{m}\right\}$.
We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_{i}, and having weight and value

$$
\Sigma_{j \in S_{i}}(m+1)^{j-1}
$$

and set the target weight and value both to

$$
\Sigma_{j=0}^{3 n-1}(m+1)^{j}
$$

